scholarly journals Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici)

BMC Genomics ◽  
2007 ◽  
Vol 8 (1) ◽  
pp. 145 ◽  
Author(s):  
Peng Ling ◽  
Meinan Wang ◽  
Xianming Chen ◽  
Kimberly Campbell
2005 ◽  
Vol 95 (8) ◽  
pp. 884-889 ◽  
Author(s):  
Vihanga Pahalawatta ◽  
Xianming Chen

Most barley cultivars are resistant to stripe rust of wheat that is caused by Puccinia striiformis f. sp. tritici. The barley cv. Steptoe is susceptible to all identified races of P. striiformis f. sp. hordei (PSH), the barley stripe rust pathogen, but is resistant to most P. striiformis f. sp. tritici races. To determine inheritance of the Steptoe resistance to P. striiformis f. sp. tritici, a cross was made between Steptoe and Russell, a barley cultivar susceptible to some P. striiformis f. sp. tritici races and all tested P. striiformis f. sp. hordei races. Seedlings of parents and F1, BC1, F2, and F3 progeny from the barley cross were tested with P. striiformis f. sp. tritici races PST-41 and PST-45 under controlled greenhouse conditions. Genetic analyses of infection type data showed that Steptoe had one dominant gene and one recessive gene (provisionally designated as RpstS1 and rpstS2, respectively) for resistance to races PST-41 and PST-45. Genomic DNA was extracted from the parents and 150 F2 plants that were tested for rust reaction and grown for seed of F3 lines. The infection type data and polymorphic markers identified using the resistance gene analog polymorphism (RGAP) technique were analyzed with the Mapmaker computer program to map the resistance genes. The dominant resistance gene in Steptoe for resistance to P. striiformis f. sp. tritici races was mapped on barley chromosome 4H using a linked microsatellite marker, HVM68. A linkage group for the dominant gene was constructed with 12 RGAP markers and the microsatellite marker. The results show that resistance in barley to the wheat stripe rust pathogen is qualitatively inherited. These genes might provide useful resistance against wheat stripe rust when introgressed into wheat from barley.


2009 ◽  
Vol 37 (2) ◽  
pp. 1045-1052 ◽  
Author(s):  
Bo Liu ◽  
Xiaodan Xue ◽  
Suping Cui ◽  
Xiaoyu Zhang ◽  
Qingmei Han ◽  
...  

2005 ◽  
Vol 6 (1) ◽  
pp. 32 ◽  
Author(s):  
Ann R. Blount ◽  
Shabbir A. Rizvi ◽  
Ronald D. Barnett ◽  
Xianming Chen ◽  
Timothy S. Schubert ◽  
...  

The wheat stripe rust pathogen occured on several experimental wheat lines planted at Quincy, FL in early February 2003. Several experimental lines in the 2003 Advanced Wheat A, the Advanced Wheat B, and the Uniform Southern Wheat Nursery yield trials then showed traces of stripe rust on the leaves of the plants. An unusually cool and wet winter and spring encouraged a scattered outbreak of stripe rust of wheat on susceptible experimental lines of wheat. This report constitutes the first documented case of stripe rust of wheat in Florida. Accepted for publication 22 February 2005. Published 4 March 2005.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 379-386 ◽  
Author(s):  
D. Sharma-Poudyal ◽  
X. M. Chen ◽  
A. M. Wan ◽  
G. M. Zhan ◽  
Z. S. Kang ◽  
...  

Wheat stripe rust (yellow rust [Yr]), caused by Puccinia striiformis f. sp. tritici, is an economically important disease of wheat worldwide. Virulence information on P. striiformis f. sp. tritici populations is important to implement effective disease control with resistant cultivars. In total, 235 P. striiformis f. sp. tritici isolates from Algeria, Australia, Canada, Chile, China, Hungary, Kenya, Nepal, Pakistan, Russia, Spain, Turkey, and Uzbekistan were tested on 20 single Yr-gene lines and the 20 wheat genotypes that are used to differentiate P. striiformis f. sp. tritici races in the United States. The 235 isolates were identified as 129 virulence patterns on the single-gene lines and 169 virulence patterns on the U.S. differentials. Virulences to YrA, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, YrUkn, Yr28, Yr31, YrExp2, Lemhi (Yr21), Paha (YrPa1, YrPa2, YrPa3), Druchamp (Yr3a, YrD, YrDru), Produra (YrPr1, YrPr2), Stephens (Yr3a, YrS, YrSte), Lee (Yr7, Yr22, Yr23), Fielder (Yr6, Yr20), Tyee (YrTye), Tres (YrTr1, YrTr2), Express (YrExp1, YrExp2), Clement (Yr9, YrCle), and Compair (Yr8, Yr19) were detected in all countries. At least 80% of the isolates were virulent on YrA, Yr2, Yr6, Yr7, Yr8, Yr17, YrUkn, Yr31, YrExp2, Yr21, Stephens (Yr3a, YrS, YrSte), Lee (Yr7, Yr22, Yr23), and Fielder (Yr6, Yr20). Virulences to Yr1, Yr9, Yr25, Yr27, Yr28, Heines VII (Yr2, YrHVII), Paha (YrPa1, YrPa2, YrPa3), Druchamp (Yr3a, YrD, YrDru), Produra (YrPr1, YrPr2), Yamhill (Yr2, Yr4a, YrYam), Tyee (YrTye), Tres (YrTr1, YrTr2), Hyak (Yr17, YrTye), Express (YrExp1, YrExp2), Clement (Yr9, YrCle), and Compair (Yr8, Yr19) were moderately frequent (>20 to <80%). Virulence to Yr10, Yr24, Yr32, YrSP, and Moro (Yr10, YrMor) was low (≤20%). Virulence to Moro was absent in Algeria, Australia, Canada, Kenya, Russia, Spain, Turkey, and China, but 5% of the Chinese isolates were virulent to Yr10. None of the isolates from Algeria, Canada, China, Kenya, Russia, and Spain was virulent to Yr24; none of the isolates from Algeria, Australia, Canada, Nepal, Russia, and Spain was virulent to Yr32; none of the isolates from Australia, Canada, Chile, Hungary, Kenya, Kenya, Nepal, Pakistan, Russia, and Spain was virulent to YrSP; and none of the isolates from any country was virulent to Yr5 and Yr15. Although the frequencies of virulence factors were different, most of the P. striiformis f. sp. tritici isolates from these countries shared common virulence factors. The virulences and their frequencies and distributions should be useful in breeding stripe-rust-resistant wheat cultivars and understanding the pathogen migration and evolution.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qi Liu ◽  
Yilin Gu ◽  
Shuhe Wang ◽  
Cuicui Wang ◽  
Zhanhong Ma

Stripe rust, caused byPuccinia striiformisf. sp.tritici(Pst), is one of the important wheat diseases worldwide. In this study, the spectral data were collected from wheat canopy during the latent period inoculated with three different concentrations of urediniospores and classification models based on discriminant partial least squares (DPLS) were built to differentiate leaves with and without infection of the stripe rust pathogen. The effects of different spectra features, wavebands, and the number of the samples used in modeling on the performances of the models were assessed. The results showed that, in the spectral region of 325–1075 nm, the model with the spectral feature of 2nd derivative of Pseudoabsorption index had better accuracy than others. The average accuracy rate was 97.28% for the training set and 92.98% for the testing set. In the waveband of 925–1075 nm, the model with the spectral feature of 1st derivative Pseudoabsorption index had better accuracy than other models, and the average accuracy rates were 98.27% and 94.33% for the training and testing sets, respectively. The results demonstrated that wheat stripe rust in latent period can be qualitatively identified based on the canopy spectral detection. Thus, the method can be used for early monitoring of infections of wheat stripe rust.


Sign in / Sign up

Export Citation Format

Share Document