scholarly journals The peroxisome proliferator-activated receptor (PPAR) alpha agonist fenofibrate maintains bone mass, while the PPAR gamma agonist pioglitazone exaggerates bone loss, in ovariectomized rats

2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Astrid K Stunes ◽  
Irene Westbroek ◽  
Björn I Gustafsson ◽  
Reidar Fossmark ◽  
Jan H Waarsing ◽  
...  
PPAR Research ◽  
2006 ◽  
Vol 2006 ◽  
pp. 1-9 ◽  
Author(s):  
Beata Lecka-Czernik ◽  
Larry J. Suva

Bone loss with aging results from attenuated and unbalanced bone turnover that has been associated with a decreased number of bone forming osteoblasts, an increased number of bone resorbing osteoclasts, and an increased number of adipocytes (fat cells) in the bone marrow. Osteoblasts and adipocytes are derived from marrow mesenchymal stroma/stem cells (MSC). The milieu of intracellular and extracellular signals that controls MSC lineage allocation is diverse. The adipocyte-specific transcription factor peroxisome proliferator-activated receptor-gamma (PPAR-γ) acts as a critical positive regulator of marrow adipocyte formation and as a negative regulator of osteoblast development.In vivo, increased PPAR-γactivity leads to bone loss, similar to the bone loss observed with aging, whereas decreased PPAR-γactivity results in increased bone mass. Emerging evidence suggests that the pro-adipocytic and the anti-osteoblastic properties of PPAR-γare ligand-selective, suggesting the existence of multiple mechanisms by which PPAR-γcontrols bone mass and fat mass in bone.


2016 ◽  
Vol 55 (9) ◽  
pp. 1143-1147 ◽  
Author(s):  
Hiroyo Ninomiya ◽  
Ayumu Hirata ◽  
Junji Kozawa ◽  
Shinsuke Nakata ◽  
Takekazu Kimura ◽  
...  

Oncogene ◽  
2021 ◽  
Vol 40 (13) ◽  
pp. 2355-2366
Author(s):  
Laura C. A. Galbraith ◽  
Ernest Mui ◽  
Colin Nixon ◽  
Ann Hedley ◽  
David Strachan ◽  
...  

AbstractPeroxisome Proliferator-Activated Receptor Gamma (PPARG) is one of the three members of the PPAR family of transcription factors. Besides its roles in adipocyte differentiation and lipid metabolism, we recently demonstrated an association between PPARG and metastasis in prostate cancer. In this study a functional effect of PPARG on AKT serine/threonine kinase 3 (AKT3), which ultimately results in a more aggressive disease phenotype was identified. AKT3 has previously been shown to regulate PPARG co-activator 1 alpha (PGC1α) localisation and function through its action on chromosome maintenance region 1 (CRM1). AKT3 promotes PGC1α localisation to the nucleus through its inhibitory effects on CRM1, a known nuclear export protein. Collectively our results demonstrate how PPARG over-expression drives an increase in AKT3 levels, which in turn has the downstream effect of increasing PGC1α localisation within the nucleus, driving mitochondrial biogenesis. Furthermore, this increase in mitochondrial mass provides higher energetic output in the form of elevated ATP levels which may fuel the progression of the tumour cell through epithelial to mesenchymal transition (EMT) and ultimately metastasis.


Sign in / Sign up

Export Citation Format

Share Document