scholarly journals The effects of a thermogenic supplement on resting metabolic rate in healthy males: preliminary results

2014 ◽  
Vol 11 (Suppl 1) ◽  
pp. P47
Author(s):  
Ryan Colquhoun ◽  
Bill Campbell ◽  
Gina Zito ◽  
Nic Martinez ◽  
Laura Buchanan ◽  
...  
2013 ◽  
Vol 113 (12) ◽  
pp. 3039-3047 ◽  
Author(s):  
Benjamin Kelly ◽  
James A. King ◽  
Jonas Goerlach ◽  
Myra A. Nimmo

Circulation ◽  
2018 ◽  
Vol 137 (suppl_1) ◽  
Author(s):  
Haley M Fair ◽  
Caleb D Harrison ◽  
Evan J Bockover ◽  
Brycen J Ratcliffe ◽  
Sierra Crowe ◽  
...  

Introduction: Nitric oxide (NO) is a vasodilator that increases blood flow by promoting relaxation of endothelium. Dietary nitrate supplementation increases plasma nitrite, a marker of overall NO bioavailability. Previously, acute dietary nitrate supplementation has been shown to reduce oxygen consumption and improve tolerance during submaximal exercise in healthy populations. Less is known about the effect of dietary nitrate on oxygen consumption at rest. Hypothesis: We hypothesized that dietary nitrate supplementation would reduce resting metabolic rate (RMR) and oxidative stress (8-isoprostane) at rest, via enhanced NO bioavailability via the oxygen independent Nitrate-Nitrite-Nitric Oxide pathway in healthy, young males. Methods: In a randomized, double-blind, cross-over study, ten healthy, young males (21 ± 2 years) visited the laboratory on 5 separate occasions. Participants completed informed consent paperwork and underwent protocol familiarization during visit 1. Prior to visits 2 and 4, participants fasted for 12 hours and adhered to an NIH-approved low-nitrate diet for 48 hours. During visits 2 and 4, an initial blood draw was performed to analyze baseline plasma nitrite and 8-isoprostane. Participants then completed a 30-minute resting metabolic rate (RMR) test. Two hours prior to visits 3 and 5, participants consumed either a placebo or dietary nitrate supplement (negligible and 6.2 mmol nitrate, respectively). During visits 3 and 5, participants also had blood drawn for analysis of the previously stated measurements, and completed an RMR test. Visits 2 and 3 were on consecutive days, followed by a week-long washout period between visit 3 and visit 4, while visit 4 and 5 also occurred on consecutive days. Results: Plasma nitrite significantly increased following dietary nitrate consumption compared to baseline values (27.56 ± 7.58 and 1.25 ± 1.51 arbitrary units, respectively). No difference was present between nitrate and baseline measurements for 8-isoprostane (155.75 ± 57.01 and 198.42 ± 66.44 pg/mL, respectively; p=0.55) and RMR (2086.60 ± 202.23 and 2050.00 ± 209.23 kcal/day, respectively; p=0.13). Conclusion: Dietary nitrate supplementation increases plasma nitrite, but does not change resting metabolic rate following an acute dose of dietary nitrate in healthy males. Individuals consuming dietary nitrate as an ergogenic aid during exercise may not, however, experience similar changes in their resting metabolism. The lack of change in oxidative stress may have been associated with the overall health of the cohort examined. Future research should investigate the clinical implications of dietary nitrate in populations with decreased NO bioavailability and associated endothelial disfunction (and elevated oxidative stress). In such populations, dietary nitrate may provide benefit. However, in a healthy cohort, dietary nitrate exerts minimal effects.


Author(s):  
Habib Yarizadeh ◽  
Leila Setayesh ◽  
Caroline Roberts ◽  
Mir Saeed Yekaninejad ◽  
Khadijeh Mirzaei

Abstract. Objectives: Obesity plays an important role in the development of chronic diseases including cardiovascular disease and diabetes. A low resting metabolic rate (RMR) for a given body size and composition is a risk factor for obesity, however, there is limited evidence available regarding the association of nutrient patterns and RMR. The aim of this study was to determine the association of nutrient patterns and RMR in overweight and obese women. Study design: This cross-sectional study was conducted on 360 women who were overweight or obese. Method: Dietary intake was assessed using a semi-quantitative standard food frequency questionnaire (FFQ). Nutrient patterns were also extracted by principal components analysis (PCA). All participants were evaluated for their body composition, RMR, and blood parameters. Result: Three nutrient patterns explaining 64% of the variance in dietary nutrients consumption were identified as B-complex-mineral, antioxidant, and unsaturated fatty acid and vitamin E (USFA-vit E) respectively. Participants were categorized into two groups based on the nutrient patterns. High scores of USFA-vit E pattern was significantly associated with the increase of RMR (β = 0.13, 95% CI = 0.79 to 68.16, p = 0.04). No significant associations were found among B-complex-mineral pattern (β = −0.00, 95% CI = −49.67 to 46.03, p = 0.94) and antioxidant pattern (β = 0.03, 95% CI −41.42 to 22.59, p = 0.56) with RMR. Conclusion: Our results suggested that the “USFA-vit E” pattern (such as PUFA, oleic, linoleic, vit.E, α-tocopherol and EPA) was associated with increased RMR.


Author(s):  
Pathima Fairoosa ◽  
Indu Waidyatilaka ◽  
Maduka de Lanerolle-Dias ◽  
Pujitha Wickramasinghe ◽  
Pulani Lanerolle

Author(s):  
Andrew Clarke

The model of West, Brown & Enquist (WBE) is built on the assumption that the metabolic rate of cells is determined by the architecture of the vascular network that supplies them with oxygen and nutrients. For a fractal-like network, and assuming that evolution has minimised cardiovascular costs, the WBE model predicts that s=metabolism should scale with mass with an exponent, b, of 0.75 at infinite size, and ~ 0.8 at realistic larger sizes. Scaling exponents ~ 0.75 for standard or resting metabolic rate are observed widely, but far from universally, including in some invertebrates with cardiovascular systems very different from that assumed in the WBE model. Data for field metabolic rate in vertebrates typically exhibit b ~ 0.8, which matches the WBE prediction. Addition of a simple Boltzmann factor to capture the effects of body temperature on metabolic rate yields the central equation of the Metabolic Theory of Ecology (MTE). The MTE has become an important strand in ecology, and the WBE model is the most widely accepted physical explanation for the scaling of metabolic rate with body mass. Capturing the effect of temperature through a Boltzmann factor is a useful statistical description but too simple to qualify as a complete physical theory of thermal ecology.


Sign in / Sign up

Export Citation Format

Share Document