scholarly journals Gold-ionic liquid nanofluids with preferably tribological properties and thermal conductivity

2011 ◽  
Vol 6 (1) ◽  
pp. 259 ◽  
Author(s):  
Baogang Wang ◽  
Xiaobo Wang ◽  
Wenjing Lou ◽  
Jingcheng Hao
Author(s):  
Wenxin Wei ◽  
Guifeng Ma ◽  
Hongtao Wang ◽  
Jun Li

Objective: A new poly(ionic liquid)(PIL), poly(p-vinylbenzyltriphenylphosphine hexafluorophosphate) (P[VBTPP][PF6]), was synthesized by quaternization, anion exchange reaction, and free radical polymerization. Then a series of the PIL were synthesized at different conditions. Methods: The specific heat capacity, glass-transition temperature and melting temperature of the synthesized PILs were measured by differential scanning calorimeter. The thermal conductivities of the PILs were measured by the laser flash analysis method. Results: Results showed that, under optimized synthesis conditions, P[VBTPP][PF6] as the thermal insulator had a high glass-transition temperature of 210.1°C, high melting point of 421.6°C, and a low thermal conductivity of 0.0920 W m-1 K-1 at 40.0°C (it was 0.105 W m-1 K-1 even at 180.0°C). The foamed sample exhibited much low thermal conductivity λ=0.0340 W m-1 K-1 at room temperature, which was comparable to a commercial polyurethane thermal insulating material although the latter had a much lower density. Conclusion: In addition, mixing the P[VBTPP][PF6] sample into polypropylene could obviously increase the Oxygen Index, revealing its efficient flame resistance. Therefore, P[VBTPP][PF6] is a potential thermal insulating material.


2022 ◽  
Vol 165 ◽  
pp. 107277
Author(s):  
Md Golam Rasul ◽  
Alper Kiziltas ◽  
Md Shafkat Bin Hoque ◽  
Arnob Banik ◽  
Patrick E. Hopkins ◽  
...  

2009 ◽  
pp. 505-506
Author(s):  
Wenjie Zhao ◽  
Deming Huang ◽  
Jibing Pu ◽  
Mingwu Baia

2019 ◽  
Vol 54 (20) ◽  
pp. 13135-13146 ◽  
Author(s):  
Peiran Dong ◽  
Chunguang Long ◽  
Ying Peng ◽  
Xin Peng ◽  
Fangyu Guo

2006 ◽  
Vol 39 (7) ◽  
pp. 635-640 ◽  
Author(s):  
Yanqiu Xia ◽  
Shijie Wang ◽  
Feng Zhou ◽  
Haizhong Wang ◽  
Yimin Lin ◽  
...  

Author(s):  
Takashi Nogi

Some tribological properties of an ionic liquid were investigated by using a pin-on-disc friction and wear tester. Due to running-in, the coefficient of friction of the ionic liquid decreased with time to a very low value of 0.02 which suggests that the lubrication regime was hydrodynamic at the end of the tests. Anti-wear performance of the ionic liquid was substantially comparable to a paraffin-based oil.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1372 ◽  
Author(s):  
Likhan Das ◽  
Khairul Habib ◽  
R. Saidur ◽  
Navid Aslfattahi ◽  
Syed Mohd Yahya ◽  
...  

In recent years, solar energy technologies have developed an emerging edge. The incessant research to develop a power source alternative to fossil fuel because of its scarcity and detrimental effects on the environment is the main driving force. In addition, nanofluids have gained immense interest as superior heat transfer fluid in solar technologies for the last decades. In this research, a binary solution of ionic liquid (IL) + water based ionanofluids is formulated successfully with two dimensional MXene (Ti3C2) nano additives at three distinct concentrations of 0.05, 0.10, and 0.20 wt % and the optimum concentration is used to check the performance of a hybrid solar PV/T system. The layered structure of MXene and high absorbance of prepared nanofluids have been perceived by SEM and UV–vis respectively. Rheometer and DSC are used to assess the viscosity and heat capacity respectively while transient hot wire technique is engaged for thermal conductivity measurement. A maximum improvement of 47% in thermal conductivity is observed for 0.20 wt % loading of MXene. Furthermore, the viscosity is found to rise insignificantly with addition of Ti3C2 by different concentrations. Conversely, viscosity decreases substantially as the temperature increases from 20 °C to 60 °C. However, based on their thermophysical properties, 0.20 wt % is found to be the optimum concentration. A comparative analysis in terms of heat transfer performance with three different nanofluids in PV/T system shows that, IL+ water/MXene ionanofluid exhibits highest thermal, electrical, and overall heat transfer efficiency compared to water/alumina, palm oil/MXene, and water alone. Maximum electrical efficiency and thermal efficiency are recorded as 13.95% and 81.15% respectively using IL + water/MXene, besides that, heat transfer coefficients are also noticed to increase by 12.6% and 2% when compared to water/alumina and palm oil/MXene respectively. In conclusion, it can be demonstrated that MXene dispersed ionanofluid might be great a prospect in the field of heat transfer applications since they can augment the heat transfer rate considerably which improves system efficiency.


Sign in / Sign up

Export Citation Format

Share Document