scholarly journals Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method

2014 ◽  
Vol 9 (1) ◽  
Author(s):  
Rachid Ouertani ◽  
Abderrahmen Hamdi ◽  
Chohdi Amri ◽  
Marouan Khalifa ◽  
Hatem Ezzaouia
Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1531 ◽  
Author(s):  
Shi Bai ◽  
Yongjun Du ◽  
Chunyan Wang ◽  
Jian Wu ◽  
Koji Sugioka

Surface-enhanced Raman spectroscopy (SERS) has advanced over the last four decades and has become an attractive tool for highly sensitive analysis in fields such as medicine and environmental monitoring. Recently, there has been an urgent demand for reusable and long-lived SERS substrates as a means of reducing the costs associated with this technique To this end, we fabricated a SERS substrate comprising a silicon nanowire array coated with silver nanoparticles, using metal-assisted chemical etching followed by photonic reduction. The morphology and growth mechanism of the SERS substrate were carefully examined and the performance of the fabricated SERS substrate was tested using rhodamine 6G and dopamine hydrochloride. The data show that this new substrate provides an enhancement factor of nearly 1 × 108. This work demonstrates that a silicon nanowire array coated with silver nanoparticles is sensitive and sufficiently robust to allow repeated reuse. These results suggest that this newly developed technique could allow SERS to be used in many commercial applications.


2014 ◽  
Vol 24 (1) ◽  
pp. 105-105 ◽  
Author(s):  
Junghoon Yeom ◽  
Daniel Ratchford ◽  
Christopher R. Field ◽  
Todd H. Brintlinger ◽  
Pehr E. Pehrsson

NANO ◽  
2020 ◽  
Vol 15 (06) ◽  
pp. 2050076
Author(s):  
Fang Sun ◽  
Zhiyuan Tan ◽  
Zhengguang Hu ◽  
Jun Chen ◽  
Jie Luo ◽  
...  

Silicon is widely studied as a high-capacity lithium-ion battery anode. However, the pulverization of silicon caused by a large volume expansion during lithiation impedes it from being used as a next generation anode for lithium-ion batteries. To overcome this drawback, we synthesized ultrathin silicon nanowires. These nanowires are 1D silicon nanostructures fabricated by a new bi-metal-assisted chemical etching process. We compared the lithium-ion battery properties of silicon nanowires with different average diameters of 100[Formula: see text]nm, 30[Formula: see text]nm and 10[Formula: see text]nm and found that the 30[Formula: see text]nm ultrathin silicon nanowire anode has the most stable properties for use in lithium-ion batteries. The above anode demonstrates a discharge capacity of 1066.0[Formula: see text]mAh/g at a current density of 300[Formula: see text]mA/g when based on the mass of active materials; furthermore, the ultrathin silicon nanowire with average diameter of 30[Formula: see text]nm anode retains 87.5% of its capacity after the 50th cycle, which is the best among the three silicon nanowire anodes. The 30[Formula: see text]nm ultrathin silicon nanowire anode has a more proper average diameter and more efficient content of SiOx. The above prevents the 30[Formula: see text]nm ultrathin silicon nanowires from pulverization and broken during cycling, and helps the 30[Formula: see text]nm ultrathin silicon nanowires anode to have a stable SEI layer, which contributes to its high stability.


2012 ◽  
Vol 51 (2) ◽  
pp. 02BP09 ◽  
Author(s):  
Shinya Kato ◽  
Yuya Watanabe ◽  
Yasuyoshi Kurokawa ◽  
Akira Yamada ◽  
Yoshimi Ohta ◽  
...  

2013 ◽  
Vol 8 (1) ◽  
pp. 155 ◽  
Author(s):  
Ruiyuan Liu ◽  
Fute Zhang ◽  
Celal Con ◽  
Bo Cui ◽  
Baoquan Sun

2016 ◽  
Vol 153 ◽  
pp. 55-59 ◽  
Author(s):  
Tomohiro Shimizu ◽  
Norihiro Tanaka ◽  
Yoshihiro Tada ◽  
Yasuhiro Hara ◽  
Noriaki Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document