scholarly journals G-patch domain and KOW motifs-containing protein, GPKOW; a nuclear RNA-binding protein regulated by protein kinase A

2011 ◽  
Vol 6 ◽  
pp. 10 ◽  
Author(s):  
Anne Kristin Aksaas ◽  
Anja C V Larsen ◽  
Marie Rogne ◽  
Ken Rosendal ◽  
Anne-Katrine Kvissel ◽  
...  
2005 ◽  
Vol 19 (1) ◽  
pp. 163-174 ◽  
Author(s):  
Amandine Gautier-Stein ◽  
Gilles Mithieux ◽  
Fabienne Rajas

Abstract Glucose-6-phosphatase (Glc6Pase) is the last enzyme of gluconeogenesis and is only expressed in the liver, kidney, and small intestine. In these tissues, the mRNA and its activity are increased when cAMP levels increased (e.g. in fasting or diabetes). We first report that a proximal region (within −200 bp relative to the transcription start site) and a distal region (−694/−500 bp) are both required for a potent cAMP and a protein kinase A (PKA) responsiveness of the Glc6Pase promoter. Using different molecular approaches, we demonstrate that hepatocyte nuclear factor (HNF4α), CAAT/ enhancer-binding protein-α (C/EBPα), C/EBPβ, and cAMP response element-binding protein (CREB) are involved in the potentiated PKA responsiveness: in the distal region, via one HNF4α- and one C/EBP-binding sites, and in the proximal region, via two HNF4α and two CREB-binding sites. We also show that HNF4α, C/EBPα, and C/EBPβ are constitutively bound to the endogenous Glc6Pase gene, whereas CREB and CREB-binding protein (CBP) will be bound to the gene upon stimulation by cAMP. These data strongly suggest that the cAMP responsiveness of the Glc6Pase promoter requires a tight cooperation between a proximal and a distal region, which depends on the presence of several HNF4α-, C/EBP-, and CREB-binding sites, therefore involving an intricate association of hepatic and ubiquitous transcription factors.


1995 ◽  
Vol 2 (4) ◽  
pp. 322-329
Author(s):  
Edward D. Blair ◽  
Christopher M. Roberts ◽  
Wendy B. Snowden ◽  
Anne Gatignol ◽  
Monsef Benkirange ◽  
...  

1995 ◽  
Vol 182 (3) ◽  
pp. 865-874 ◽  
Author(s):  
Q Tian ◽  
J Taupin ◽  
S Elledge ◽  
M Robertson ◽  
P Anderson

We have identified a serine/threonine kinase that is rapidly activated during Fas-mediated apoptosis. Fas-activated serine/threonine kinase (FAST) is phosphorylated on serine and threonine residues in Jurkat cells. In response to Fas ligation, it is rapidly dephosphorylated and concomitantly activated to phosphorylate TIA-1, a nuclear RNA-binding protein that has been implicated as an effector of apoptosis. Phosphorylation of TIA-1 precedes the onset of DNA fragmentation, suggesting a role in signaling downstream events in the apoptotic program. Our results introduce Fast and TIA-1 as components of a molecular cascade involved in signaling Fas-mediated apoptosis.


2010 ◽  
Vol 136 (6) ◽  
pp. 615-627 ◽  
Author(s):  
Peter P. Chen ◽  
Jitandrakumar R. Patel ◽  
Inna N. Rybakova ◽  
Jeffery W. Walker ◽  
Richard L. Moss

In skinned myocardium, cyclic AMP–dependent protein kinase A (PKA)-catalyzed phosphorylation of cardiac myosin–binding protein C (cMyBP-C) and cardiac troponin I (cTnI) is associated with a reduction in the Ca2+ responsiveness of myofilaments and an acceleration in the kinetics of cross-bridge cycling, although the respective contribution of these two proteins remains controversial. To further examine the relative roles that cTnI and cMyBP-C phosphorylation play in altering myocardial function, we determined the Ca2+ sensitivity of force (pCa50) and the activation dependence of the rate of force redevelopment (ktr) in control and PKA-treated mouse myocardium (isolated in the presence of 2,3-butanedione monoxime) expressing: (a) phosphorylatable cTnI and cMyBP-C (wild type [WT]), (b) phosphorylatable cTnI on a cMyBP-C–null background (cMyBP-C−/−), (c) nonphosphorylatable cTnI with serines23/24/43/45 and threonine144 mutated to alanines (cTnIAla5), and (d) nonphosphorylatable cTnI on a cMyBP-C–null background (cTnIAla5/cMyBP-C−/−). Here, PKA treatment decreased pCa50 in WT, cTnIAla5, and cMyBP-C−/− myocardium by 0.13, 0.08, and 0.09 pCa units, respectively, but had no effect in cTnIAla5/cMyBP-C−/− myocardium. In WT and cTnIAla5 myocardium, PKA treatment also increased ktr at submaximal levels of activation; however, PKA treatment did not have an effect on ktr in cMyBP-C−/− or cTnIAla5/cMyBP-C−/− myocardium. In addition, reconstitution of cTnIAla5/cMyBP-C−/− myocardium with recombinant cMyBP-C restored the effects of PKA treatment on pCa50 and ktr reported in cTnIAla5 myocardium. Collectively, these results indicate that the attenuation in myofilament force response to PKA occurs as a result of both cTnI and cMyBP-C phosphorylation, and that the reduction in pCa50 mediated by cMyBP-C phosphorylation most likely arises from an accelerated cross-bridge cycling kinetics partly as a result of an increased rate constant of cross-bridge detachment.


Sign in / Sign up

Export Citation Format

Share Document