scholarly journals Activity of Cinnamomum osmophloeum leaf essential oil against Anopheles gambiae s.s

2014 ◽  
Vol 7 (1) ◽  
pp. 209 ◽  
Author(s):  
France P Mdoe ◽  
Sen-Sung Cheng ◽  
Shandala Msangi ◽  
Gamba Nkwengulila ◽  
Shang-Tzen Chang ◽  
...  
2020 ◽  
Author(s):  
Roméo Barnabé Bohounton ◽  
Luc Salako Djogbénou ◽  
Oswald Yédjinnavênan Djihinto ◽  
Oronce Sedjro-Ludolphe Dedome ◽  
Pierre Marie Sovegnon ◽  
...  

AbstractThe use of synthetic insecticides is responsible for many cases of resistance in insects. Therefore, the use of natural molecules of ecological interest with insecticidal properties turns out to be an alternative approach to the use of synthetic insecticides. This study aims at investigating the larvicidal, adulticidal activity and the composition of the essential oil of Aeollanthus pubescens Benth on the major malaria vector Anopheles gambiae.The leaves of Aeollanthus pubescens were collected in the South of the Republic of Benin. Three reference strains of Anopheles gambiae s.s. such as Kisumu, Kiskdr and Acerkis were used. The chemical composition of the essential oil was analysed by gas chromatography coupled to mass spectrometry. Larvae were exposed to the essential oil extract for 24 h. Adult mosquitoes were exposed to the fragment nets coated with the essential oil for 3 min. Larval mortality and adult survivorship were monitored.Fourteen components were identified representing 98.31% of the total of oil. The major components were carvacrol (51.06 %), thymyle acetate (14.01 %) and γ-terpinene (10.60 %). The essential oil has remarkable larvicidal properties with LC50 of 29.26, 22.65, and 28.37 ppm respectively on Kisumu, Acerkis and Kiskdr strains. With the fragment net treated at 165 µg/cm2, the KDT50 of both Acerkis (1.71 s, p < 0.001) and Kiskdr (2.67 s, p < 0.001) individuals were significantly lower than that of Kisumu (3.77 s). The lifespan of the three mosquito strains decreased respectively to one day for Kisumu (p < 0.001), two days for Acerkis (p < 0.001) and three days for Kiskdr (p < 0.001) compared to their control.Our findings show that the Aeollanthus pubescens essential oil is an efficient larvicide and adulticide against malaria vector Anopheles gambiae. This bioinsecticidal activity is a promising discovery for the control of the resistant malaria-transmitting vectors.


2021 ◽  
Author(s):  
Roméo Barnabé BOHOUNTON ◽  
Luc Djogbenou ◽  
Oswald Yédjinnavênan Djihinto ◽  
Oronce Sedjro-Ludolphe Dedome ◽  
Pierre Marie Sovegnon ◽  
...  

Abstract Background: The use of synthetic insecticides is responsible for many cases of resistance in insects. Therefore, the use of natural molecules of ecological interest with insecticidal properties turns out to be an alternative approach to the use of synthetic insecticides. This study aims at investigating the larvicidal, adulticidal activity and the chemical composition of the essential oil of Aeollanthus pubescens Benth on the major malaria vector Anopheles gambiae.The leaves of Aeollanthus pubescens were collected in the South of the Republic of Benin.Methods: Three reference strains of Anopheles gambiae s.s. such as Kisumu, Kiskdr and Acerkis were used. The standard WHO guideline for larvicides evaluation was used and the chemical composition of the essential oil was analysed by gas chromatography coupled to mass spectrometry. Adult mosquitoes were exposed to the fragment nets coated with the essential oil for 3 min. Probit regression analysis was used for LC50 , LC95 , KDT50 , and KDT95 calculations. The difference between the mortality‐dose regressions for the different strains was analysed using the likelihood ratio test (LRT). The Log-rank test was performed to evaluate the difference in survival between the strains.Results: Fourteen components were identified representing 98.31% of the total of oil. The major components were carvacrol (51.06 %), thymyle acetate (14.01 %) and ɣ-terpinene (10.60 %). The essential oil has remarkable larvicidal properties with LC50 of 29.57, 22.95, and 28.37 ppm respectively on Kisumu, Acerkis and Kiskdr strains. With the fragment net treated at 165 µg/cm2, the KDT50 of both Acerkis (1.71 s, p < 0.001) and Kiskdr (2.67 s, p < 0.001) individuals were significantly lower than that of Kisumu (3.77 s). The lifespan of the three mosquito strains decreased respectively to one day for Kisumu (p < 0.001), two days for Acerkis (p < 0.001) and three days for Kiskdr (p < 0.001) compared to their control.Conclusion: Our findings show that the Aeollanthus pubescens essential oil is an efficient larvicide and adulticide against malaria vector Anopheles gambiae. This bioinsecticidal activity is a promising discovery for the control of the resistant malaria-transmitting vectors.


2020 ◽  
Vol 10 ◽  
Author(s):  
Navadha Bhatt ◽  
Navabha Joshi ◽  
Kapil Ghai ◽  
Om Prakash

Background: The Lamiaceae (Labiatae) is one of the most diverse and widespread plant families’ in terms of ethno medicine and its medicinal value is based on the volatile oils concentration. This family is important for flavour, fragrance and medicinal properties. Manyplants belonging to this family have indigenous value. Method: The essential oil of Plectranthus gerardianusBenth. (Lamiaceae), was analysed by GC and GC-MS analysis, while the major component was isolated and conformed by NMR spectroscopy. Result: The oil was found to be rich in oxygenated monoterpenes, which contribute around 62% of the total oil. The major components identified were fenchone (22.90%) and carvenone oxide (16.75%), besides other mono and sesquiterpenoids. The in-vitro antimicrobial activity of essential oil was tested against three gram negative bacteria viz. Pasteurellamultocida, Escherichia coli, and Salmonella enterica, two gram positive bacteria viz. Staphylococcus aureus and Bacillus subtilis and two fungi viz. Candida albicans and Aspergillusflavus. The antimicrobial activity of the oil was also compared to the antimicrobial activity of leaf essential oil of another Himalayan plant viz. Nepetacoerulescens. Conclusion: The oil showed in-vitro antimicrobial activity against all the microbial strains and can lessen the ever-growing demand of potentially hazardous antibiotics for treatment.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1303 ◽  
Author(s):  
Do N. Dai ◽  
Nguyen T. Chung ◽  
Le T. Huong ◽  
Nguyen H. Hung ◽  
Dao T.M. Chau ◽  
...  

Members of the genus Cinnamomum (Lauraceae) have aromatic volatiles in their leaves and bark and some species are commercially important herbs and spices. In this work, the essential oils from five species of Cinnamomum (C. damhaensis, C. longipetiolatum, C. ovatum, C. polyadelphum and C. tonkinense) growing wild in north central Vietnam were obtained by hydrodistillation, analyzed by gas chromatography and screened for antimicrobial and mosquito larvicidal activity. The leaf essential oil of C. tonkinense, rich in β-phellandrene (23.1%) and linalool (32.2%), showed excellent antimicrobial activity (MIC of 32 μg/mL against Enterococcus faecalis and Candida albicans) and larvicidal activity (24 h LC50 of 17.4 μg/mL on Aedes aegypti and 14.1 μg/mL against Culex quinquefasciatus). Cinnamomum polyadelphum leaf essential oil also showed notable antimicrobial activity against Gram-positive bacteria and mosquito larvicidal activity, attributable to relatively high concentrations of neral (11.7%) and geranial (16.6%). Thus, members of the genus Cinnamomum from Vietnam have shown promise as antimicrobial agents and as potential vector control agents for mosquitoes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Oluwakayode O. Odeja ◽  
Michael Gabriel Ibok ◽  
Ejike O. Okpala

Abstract Background Asparagus flagellaris leaves are ethnomedicinally used to treat syphilis, gonorrhea and other sexually transmitted diseases (STDs), with no reports on the volatile constituents. This study was aimed to quantitatively and qualitatively characterise the composition of essential oil, evaluates the free radical scavenging and antimicrobial capacity of the essential oil. Methods The essential oil was isolated by hydrodistillation method using all-glass Clevenger-type apparatus, while the identification and quantification of constituents were performed by gas chromatography-mass spectrometry (GC-MS) technique. The antioxidant activity on 2, 2-diphenyl-1-picrylhydrazyl (DPPH) was evaluated and the oil was also tested against 10 strains of microorganisms consisting of 6 bacteria: Escherichia coli, Salmonella typhi, Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis and 4 fungi: Candida albicans, Penicillium notatum, Aspergillus niger and Rhizopus spp. using broth dilution and surface plate methods, respectively. Results A pale yellow essential oil with a characteristic scent was obtained, with a yield of 0.80% (w/w). A total of 28 compounds accounting for 97.41% of the total oil contents were identified. The oil was predominated by Thymol and its derivatives, accounting for 57.48%. The most abundance (% area) constituents of the essential oil were 5-Thymyl tiglate (18.49%), Thymyl-2-methyl butyrate (17.34%), Thymol hydroquinone dimethyl ether (10.52%), Thymol methyl ether (9.42%) and 5-Propyl-1, 3-benzodioxole (4.59%). The essential oil showed a significant free radical scavenging activity compared to the standard antioxidant drugs used in this study, with % inhibition varying from 88.06 ± 0.0001 to 93.05 ± 0.0006. The leaf essential oil exhibited antimicrobial activity on all the tested organisms at 500–125 μg/mL, with an 18–10 mm inhibitory zone. Conclusion The leaf essential oil of A. flagellaris contains notable chemical compounds responsible for its antioxidant and antimicrobial activities.


2001 ◽  
Vol 10 (1) ◽  
pp. 25-32 ◽  
Author(s):  
G. Gentile ◽  
M. Slotman ◽  
V. Ketmaier ◽  
J. R. Powell ◽  
A. Caccone

Sign in / Sign up

Export Citation Format

Share Document