scholarly journals High avidity autoreactive T cells with a low signalling capacity through the T-cell receptor: central to rheumatoid arthritis pathogenesis?

2008 ◽  
Vol 10 (4) ◽  
pp. 210 ◽  
Author(s):  
Ranjeny Thomas ◽  
Malcolm Turner ◽  
Andrew P Cope
2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A204-A204
Author(s):  
Jack Reid ◽  
Shihong Zhang ◽  
Ariunaa Munkhbat ◽  
Matyas Ecsedi ◽  
Megan McAfee ◽  
...  

BackgroundT Cell Receptor (TCR)-T cell therapies have shown some promising results in cancer clinical trials, however the efficacy of treatment remains suboptimal. Outcomes could potentially be improved by utilizing highly functional TCRs for future trials. Current TCR discovery methods are relatively low throughput and rely on synthesis and screening of individual TCRs based on tetramer binding and peptide specificity, which is costly and labor intensive. We have developed and validated a pooled approach relying on directly cloned TCRs transduced into a fluorescent Jurkat reporter system (figure 1). This approach provides an unbiased, high-throughput method for TCR discovery.MethodsAs a model for POTS, T cells specific for a peptide derived adenovirus structural protein were sorted on tetramer and subjected to 10x single cell VDJ analysis. Pools of randomly paired TCR alpha and beta chains were cloned from the 10x cDNA into a lentiviral vector and transduced into a Jurkat reporter cells. Consecutive stimulations with cognate antigen followed by cell sorts were performed to enrich for functional TCRs. Full length TCRab pools were sequenced by Oxford Nanopore Technologies (ONT) and compared to a 10x dataset to find naturally paired TCRs.ResultsComparison between the ex vivo single cell VDJ sequencing and ONT sequencing of the transduced antigen specific TCRs showed more than 99% of the TCR pairs found in reporter positive Jurkat cells were naturally paired TCRs. The functionality of 8 TCR clonotypes discovered using POTS were compared and clone #2 showed the strongest response. Of the selected clonotypes, clone #2 showed a low frequency of 0.9% in the ex vivo single cell VDJ sequencing. After the first round of stimulation and sequencing, clone #2 takes up of 5% of all reporter-positive clones. The abundance of clone #2 further increased to 17% after another round of stimulation, sorting and sequencing, suggesting this method can retrieve and enrich for highly functional antigen specific TCRs.Abstract 192 Figure 1Outline of the POTS workflow.ConclusionsPOTS provides a high-throughput method for discovery of naturally paired, high-avidity T cell receptors. This method mitigates bias introduced by T cell differentiation state by screening TCRs in a clonal reporter system. Additionally, POTS allows for screening of low abundance clones when compared with traditional TCR discovery techniques. Pooled TCRs could also be screened in vivo with primary T cells in a mouse model to screen for the most functional and physiologically fit TCR for cancer treatment.


1999 ◽  
Vol 263 (1) ◽  
pp. 172-180 ◽  
Author(s):  
Toru Mima ◽  
Shiro Ohshima ◽  
Mitsuko Sasai ◽  
Katsuhiro Nishioka ◽  
Masatoshi Shimizu ◽  
...  

2019 ◽  
Author(s):  
Xu Jiang ◽  
Shi-yu Wang ◽  
Chen Zhou ◽  
Jing-hua Wu ◽  
Yu-hao Jiao ◽  
...  

AbstractThe pathogenesis of rheumatoid arthritis (RA), a systemic autoimmune disease characterized by autoreactive T-cell accumulation and pro-inflammatory cytokine overproduction, is unclear. Systematically addressing T-cell receptor (TCR) repertoires of different CD4+ T-cell subsets could help understand RA pathogenesis. Here, peripheral CD4+ T cells from treatment-naïve RA patients and healthy controls were sorted into seven subsets including naïve, effector, central memory, effector memory (EMT), Th1, Th17, and regulatory T cells. T-cell receptor β chain repertoires were then analyzed by next-generation sequencing. We identified T-cell clonal expansion in EMT and Th17 cells, with highly similar TCR repertoires between them. Ex vivo experiments demonstrated the preferred differentiation from EMT to Th17 cells in RA. Moreover, TCR diversity in subsets including Th17 was negatively correlated with RA disease activity indices such as C-reactive protein and erythrocyte sedimentation rate. Thus, shared and abnormally expanded EMT and Th17 TCR repertoires might be pivotal for RA pathogenesis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3712-3712
Author(s):  
Holger Kronig ◽  
Kathrin Hofer ◽  
Julia Neudorfer ◽  
Christian Peschel ◽  
Helga Bernhard

Abstract Cancer testis (CT)-antigens belong to a class of tumor antigens that are aberrantly expressed in a variety of hematological malignancies including multiple myeloma. Owing to their restricted gene expression, CT-antigens represent potential target antigens for immunotherapeutical approaches such as vaccination and adoptive T cell transfer. As the CT-antigens are self antigens, the majority of CT-antigen-specific autologous T cells display a low avidity T cell receptor (TCR), which often results in a weak tumor recognition efficiency. Our group has been focusing on the isolation of highly avid T cells against CT-antigens that are expressed in multiple myeloma, in particular MAGE-C1, MAGE-C2, and NY-ESO-1. The experimental approach was based on the stimulation of allo-restricted cytotoxic T cells, because highly avid T cells recognizing peptide epitopes in context with foreign HLA-alleles are not depleted in the thymus. HLA-A2-negative T cells were stimulated with HLA-A2-positive allogeneic dendritic cells that had been exogenously loaded with HLA-A2-binding peptides derived from NY-ESO-1, MAGE-C1 or MAGE-C2. Using this technique we were able to isolate allo-HLA-A2-restricted cytotoxic T lymphocyte (CTL) clones with peptide-dominant binding against known and novel peptide epitopes derived from NY-ESO-1, MAGE-C1 and MAGE-C2. The expanded peptide-specific CTL clones lysed HLA-A2-positive myeloma cell lines expressing NY-ESO-1, MAGE-C1 and MAGE-C2, respectively. Of note, the MAGE-C1-specific T cells crossreacted with the corresponding MAGE-C2 peptide due to the existing sequence homology between MAGE-C1 and MAGE-C2. Current experiments focus on redirecting primary T cells toward myeloma cells by retroviral gene transfer of CT-antigen-specific TCRs. The establishment of a set of high avidity TCRs specific for CT-antigens facilitates the development of adoptive transfer regimens based on TCR-transduced T cells for the treatment of multiple myeloma.


1990 ◽  
Vol 172 (6) ◽  
pp. 1805-1817 ◽  
Author(s):  
J D Mountz ◽  
T Zhou ◽  
J Eldridge ◽  
K Berry ◽  
H Blüthmann

The lpr gene in homozygous form induces development of CD4-CD8-B220+ T cells and lymphadenopathy in MRL and C57BL/6 mice. Although the propensity for excessive production of T cells is related to an intrinsic T cell defect, a thymus is also required because neonatal thymectomy eliminates lymphadenopathy. Recent evidence suggests that excessive production and release of autoreactive T cells from the thymus of lpr/lpr mice might lead to downregulation of CD4 and CD8 as a "fail safe" tolerance mechanism that occurs during late thymic or post-thymic development. To test this hypothesis, T cell receptor (TCR) transgenic mice that produce large numbers of immature thymocytes recognizing the H-2Db and male H-Y antigens were backcrossed with C57BL/6-lpr/lpr mice and MRL-lpr/lpr mice. It was predicted that Db male lpr/lpr mice would produce large numbers of autoreactive T cells during early thymic development that would lead to an accelerated lymphoproliferative disease. In contrast, Db female lpr/lpr mice would produce large numbers of Db H-Y-reactive T cells, but might not develop lymphadenopathy because the male H-Y antigen would not be present. Unexpectedly, there was complete elimination of lymphadenopathy in both male and female TCR transgenic lpr/lpr mice. The elimination of lymphadenopathy was not due to a failure of thymic maturation since the thymus of H-2Db female lpr/lpr mice contained nearly normal numbers of mature thymocytes. Elimination of lymphadenopathy was also not due to a lack of autoreactive T cells in the peripheral lymph nodes (LN) since there was an increased syngeneic mixed lymphocyte proliferative response of LNT cells from transgenic lpr/lpr compared with +/+ mice in vitro. Hypergammaglobulinemia and autoantibody production in the transgenic lpr/lpr was present at levels comparable with or higher than control nontransgenic lpr/lpr mice, suggesting a dissociation of autoantibody production from the lymphoproliferative disease in the TCR transgenic mice. Conversely, the development of lymphadenopathy and production of CD4-CD8-B220+ T cells appear to be intimately linked, as both were completely eliminated in T cells expressing the transgenic TCR. We propose that lymphoproliferation and production of CD4-CD8-6B2+ T cells in lpr/lpr mice is related to decreased expression of the TCR, and providing the T cells with a rearranged TCR transgene overcomes this defect.


1995 ◽  
Vol 756 (1 T-Cell Recept) ◽  
pp. 179-182 ◽  
Author(s):  
R. HINGORANI ◽  
J. MONTEIRO ◽  
R. PERGOLIZZI ◽  
R. FURIE ◽  
E. CHARTASH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document