scholarly journals A phenotypic screening platform to identify small molecule modulators of Chlamydomonas reinhardtii growth, motility and photosynthesis

2012 ◽  
Vol 13 (11) ◽  
pp. R105 ◽  
Author(s):  
Simon E Alfred ◽  
Anuradha Surendra ◽  
Chris Le ◽  
Ken Lin ◽  
Alexander Mok ◽  
...  
2010 ◽  
Vol 2 (5) ◽  
pp. 757-774 ◽  
Author(s):  
Gautam Bhave ◽  
Daniel Lonergan ◽  
Brian A Chauder ◽  
Jerod S Denton

2021 ◽  
Author(s):  
Li Zhu ◽  
Annie Wing-tung Lee ◽  
Kelvin Ka-Lok WU ◽  
Peng GAO ◽  
Kingsley King-Gee Tam ◽  
...  

The emergence of multidrug-resistant strains and hyper-virulent strains of Mycobacterium tuberculosis are big therapeutic challenges for tuberculosis (TB) control. Repurposing bioactive small-molecule compounds has recently become a new therapeutic approach against TB. This study aimed to construct a rapid screening system to identify novel anti-TB agents from a library of small-molecule compounds. In this study, a total of 320 small-molecule compounds were used to screen for their ability to suppress the expression of a key virulence gene, phoP, of M. tuberculosis complex using luminescence (lux)-based promoter-reporter platforms. The minimum inhibitory and bactericidal concentrations on drug-resistant M. tuberculosis and cytotoxicity to human macrophage were determined. RNA-sequencing (RNA-seq) was conducted to determine the drug mechanisms of the selected compounds as novel antibiotics or anti-virulent agents against the M. tuberculosis complex. Six compounds displayed bactericidal activity against M. bovis BCG, in which Ebselen demonstrated the lowest cytotoxicity to macrophage and was considered as a potential antibiotic for TB. Another ten compounds did not inhibit the in vitro growth of the M. tuberculosis complex but down-regulated the expression of phoP specifically. Of them, ST-193 and ST-193 (hydrochloride) showed low cytotoxicity and could dysregulate the entire phoP-associated gene network, and thus identified as potential anti-virulence agents for M. tuberculosis. This study provides a rapid screening platform coupled with a systematic validation and eventually suggested one potential antibiotic and two anti-virulence agents for M. tuberculosis infections.


2010 ◽  
Vol 104 (2) ◽  
pp. 118-125 ◽  
Author(s):  
Anja Berwanger ◽  
Susanne Eyrisch ◽  
Inge Schuster ◽  
Volkhard Helms ◽  
Rita Bernhardt

Sign in / Sign up

Export Citation Format

Share Document