scholarly journals The cholinergic anti-inflammatory pathway alleviates acute lung injury

2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Ulf Andersson
2020 ◽  
Vol 34 ◽  
pp. 205873842095494
Author(s):  
Zhe Yang ◽  
Qin Yin ◽  
Opeyemi Joshua Olatunji ◽  
Yan Li ◽  
Shu Pan ◽  
...  

Introduction: Alpha-mangostin (MAN) possesses a wide variety of pharmacological effects. In this study, we investigated its effect on cholinergic anti-inflammatory pathway (CAP), and tested if CAP regulation was involved in the therapeutic action on acute lung injury (ALI). Methods: Male Sprague Dawley rats were pre-treated with MAN (40 mg/kg) for 3 days and ALI was induced with an intraperitoneal injection of lipopolysaccharide (LPS). Certain rats received monolateral vagotomy or sham surgery. The effects on inflammatory reactions and relevant pathways in ALI rats or LPS pre-treated RAW 264.7 cells were investigated by histological, immunohistochemical, immunoblotting, RT-qPCR, and immunofluorescence assays, while levels of proinflammatory cytokines, acetylcholine (Ach) and the enzymatic activity of acetylcholinesterase (AchE) were determined by corresponding quantitative kits. Results: Oral administration of MAN reduced the severity of ALI, while vagotomy surgery antagonized this effect. MAN restored the decline in α7 nicotinic acetylcholine receptor (α7nAchR) in the lungs of ALI rats, and promoted the expression of α7nAchR and choline acetyltransferase (CHAT) in RAW 264.7 cells. Although AchE expression was barely affected by MAN at 5 μg/ml, its catalytic activity was reduced by almost 95%. Extracellular rather than intracellular Ach was notably raised shortly after MAN treatment. Furthermore, MAN at 5 μg/ml effectively inhibited LPS-induced increase in phosphorylation and nucleus translocation of p65 subunit, and secretion of TNF-α and IL-1β, which was then offset by methyllycaconitine citrate hydrate. Conclusion: MAN activated CAP by increasing peripheral Ach and up-regulating α7nAchR expression, which eventually led to NF-κB inhibition and remission of acute inflammations.


2021 ◽  
Author(s):  
Irina N. Baranova ◽  
Alexander V. Bocharov ◽  
Tatyana G. Vishnyakova ◽  
Zhigang Chen ◽  
Anna A. Birukova ◽  
...  

Recent studies suggest an anti-inflammatory protective role for class B scavenger receptor BI (SR-BI) in endotoxin-induced inflammation and sepsis. Other data, including ours, provide evidence for an alternative role of SR-BI, facilitating bacterial and endotoxin uptake, and contributing to inflammation and bacterial infection. Enhanced endotoxin susceptibility of SR-BI deficient mice due to their anti-inflammatory glucocorticoid deficiency complicates understanding SR-BI’s role in endotoxemia/sepsis, calling for use of alternative models. In this study, using hSR-BI and hSR-BII transgenic mice, we found that SR-BI and to a lesser extent its splicing variant SR-BII, protects against LPS-induced lung damage. At 20 hours after intratracheal LPS instillation the extent of pulmonary inflammation and vascular leakage was significantly lower in hSR-BI and hSR-BII transgenic mice compared to wild type mice. Higher bronchoalveolar lavage fluid (BALF) inflammatory cell count and protein content as well as lung tissue neutrophil infiltration found in wild type mice was associated with markedly (2-3 times) increased pro-inflammatory cytokine production as compared to transgenic mice following LPS administration. Markedly lower endotoxin levels detected in BALF of transgenic vs. wild type mice along with the significantly increased BODIPY-LPS uptake observed in lungs of hSR-BI and hSR-BII mice 20 hours after the IT LPS injection suggest that hSR-BI and hSR-BII-mediated enhanced LPS clearance in the airways could represent the mechanism of their protective role against LPS-induced acute lung injury.


2021 ◽  
Vol 17 (73) ◽  
pp. 163
Author(s):  
Yi Zhu ◽  
Feng Wang ◽  
Jian Huang ◽  
Jun Li ◽  
Kang Chen ◽  
...  

2019 ◽  
Vol 11 (16) ◽  
pp. 2081-2094 ◽  
Author(s):  
Tingting Guo ◽  
Zhenzhong Su ◽  
Qi Wang ◽  
Wei Hou ◽  
Junyao Li ◽  
...  

Aim: Thus far, the anti-inflammatory effect of vanillin in acute lung injury (ALI) has not been studied. This study aimed to investigate the effect of vanillin in lipopolysaccharide (LPS)-induced ALI. Results & methodology: Our study detected the anti-inflammatory effects of vanillin by ELISA and western blot, respectively. Pretreatment of mice with vanillin significantly attenuated LPS-stimulated lung histopathological changes, myeloperoxidase activity and expression levels of proinflammatory cytokines by inhibiting the phosphorylation activities of ERK1/2, p38, AKT and NF-κB p65. In addition, vanillin inhibited LPS-induced TNF-α and IL-6 expression in RAW264.7 cells via ERK1/2, p38 and NF-κB signaling. Conclusion: Vanillin can inhibit macrophage activation and lung inflammation, which suggests new insights for clinical treatment of ALI.


2019 ◽  
Vol 66 ◽  
pp. 177-184 ◽  
Author(s):  
Jun Fei ◽  
Lin Fu ◽  
Biao Hu ◽  
Yuan-Hua Chen ◽  
Hui Zhao ◽  
...  

2020 ◽  
Author(s):  
Hongxia Mei ◽  
Ying Tao ◽  
Tianhao Zhang ◽  
Feng Qi

Abstract Background: Acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS) are critical life-threatening syndromes characterized by the infiltration of a large number of neutrophils that lead to an excessive inflammatory response. Emodin (Emo) is a naturally occurring anthraquinone derivative and an active ingredient of Chinese medicine. It is believed to have anti-inflammatory effects. In this study, we examined the impact of Emo on the pulmonary inflammatory response and the neutrophil function in a rat model of lipopolysaccharide (LPS)-induced ALI.Results: Treatment with Emo protected rat against LPS-induced ALI. Compared to untreated rat, Emo-treated rat exhibited significantly ameliorated lung pathological changes and decreased tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). However, Emo has no protective effect on the rat model of acute lung injury with neutrophil deficiency. In addition, treatment with Emo enhanced the bactericidal capacity of LPS-induced neutrophils via the up-regulation of the ability of neutrophils to phagocytize bacteria and generate neutrophil extracellular traps (NETs). Emo also downregulated the neutrophil respiratory burst and the expression of reactive oxygen species (ROS) in LPS-stimulated neutrophils, alleviating the damage of neutrophils to surrounding tissues. Finally, Emo can accelerate the resolution of inflammation by promoting apoptosis of neutrophils. Conclusion: Our results provide the evidence that Emo could ameliorates LPS-induced ALI via its anti-inflammatory action by modulating the function of neutrophils. Emo may be a promising preventive and therapeutic agent in the treatment of ALI.


Neonatology ◽  
2006 ◽  
Vol 89 (3) ◽  
pp. 159-170 ◽  
Author(s):  
Thomas L. Miller ◽  
Beth N. Shashikant ◽  
Aprile L. Pilon ◽  
Richard A. Pierce ◽  
Thomas H. Shaffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document