scholarly journals Emodin alleviates LPS-induced inflammatory response in lung injury rat by affecting the function of neutrophils

2020 ◽  
Author(s):  
Hongxia Mei ◽  
Ying Tao ◽  
Tianhao Zhang ◽  
Feng Qi

Abstract Background: Acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS) are critical life-threatening syndromes characterized by the infiltration of a large number of neutrophils that lead to an excessive inflammatory response. Emodin (Emo) is a naturally occurring anthraquinone derivative and an active ingredient of Chinese medicine. It is believed to have anti-inflammatory effects. In this study, we examined the impact of Emo on the pulmonary inflammatory response and the neutrophil function in a rat model of lipopolysaccharide (LPS)-induced ALI.Results: Treatment with Emo protected rat against LPS-induced ALI. Compared to untreated rat, Emo-treated rat exhibited significantly ameliorated lung pathological changes and decreased tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). However, Emo has no protective effect on the rat model of acute lung injury with neutrophil deficiency. In addition, treatment with Emo enhanced the bactericidal capacity of LPS-induced neutrophils via the up-regulation of the ability of neutrophils to phagocytize bacteria and generate neutrophil extracellular traps (NETs). Emo also downregulated the neutrophil respiratory burst and the expression of reactive oxygen species (ROS) in LPS-stimulated neutrophils, alleviating the damage of neutrophils to surrounding tissues. Finally, Emo can accelerate the resolution of inflammation by promoting apoptosis of neutrophils. Conclusion: Our results provide the evidence that Emo could ameliorates LPS-induced ALI via its anti-inflammatory action by modulating the function of neutrophils. Emo may be a promising preventive and therapeutic agent in the treatment of ALI.

2020 ◽  
Author(s):  
Hongxia Mei ◽  
Ying Tao ◽  
Tianhao Zhang ◽  
Feng Qi

Abstract Background: Acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS) are critical life-threatening syndromes characterized by the infiltration of a large number of neutrophils that lead to an excessive inflammatory response. Emodin (Emo) is a naturally occurring anthraquinone derivative and an active ingredient of Chinese medicine. It is believed to have anti-inflammatory effects. In this study, we examined the impact of Emo on the pulmonary inflammatory response and the neutrophil function in a rat model of lipopolysaccharide (LPS)-induced ALI.Results: Treatment with Emo protected rat against LPS-induced ALI. Compared to untreated rat, Emo-treated rat exhibited significantly ameliorated lung pathological changes and decreased tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). However, Emo has no protective effect on the rat model of acute lung injury with neutrophil deficiency. In addition, treatment with Emo enhanced the bactericidal capacity of LPS-induced neutrophils via the up-regulation of the ability of neutrophils to phagocytize bacteria and generate neutrophil extracellular traps (NETs). Emo also downregulated the neutrophil respiratory burst and the expression of reactive oxygen species (ROS) in LPS-stimulated neutrophils, alleviating the damage of neutrophils to surrounding tissues. Finally, Emo can accelerate the resolution of inflammation by promoting apoptosis of neutrophils. Conclusion: Our results provide the evidence that Emo could ameliorates LPS-induced ALI via its anti-inflammatory action by modulating the function of neutrophils. Emo may be a promising preventive and therapeutic agent in the treatment of ALI.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yiyi Jin ◽  
Jianchang Qian ◽  
Xin Ju ◽  
Xiaodong Bao ◽  
Li Li ◽  
...  

Inflammation is a key factor in the pathogenesis of ALI. Therefore, suppression of inflammatory response could be a potential strategy to treat LPS-induced lung injury. Osthole, a natural coumarin extract, has been reported to protect against acute kidney injury through an anti-inflammatory mechanism, but its effect on ALI is poorly understood. In this study, we investigated whether osthole ameliorates inflammatory sepsis-related ALI. Results from in vitro studies indicated that osthole treatment inhibited the LPS-induced inflammatory response in mouse peritoneal macrophages through blocking the nuclear translocation of NF-κB. Consistently, the in vivo studies indicated that osthole significantly prolonged the survival of septic mice which was accompanied by inflammation suppression. In the ALI mouse model, osthole effectively inhibited the development of lung tissue injury, leukocytic recruitment, and cytokine productions, which was associated with inhibition of NF-κB nuclear translocation. These findings provide evidence that osthole was a potent inhibitor of NF-κB and inflammatory injury and suggest that it could be a promising anti-inflammatory agent for therapy of septic shock and acute lung injury.


Nanomedicine ◽  
2020 ◽  
Vol 15 (27) ◽  
pp. 2647-2654
Author(s):  
Keisuke Yoshida ◽  
Yukihiro Ikegami ◽  
Shinju Obara ◽  
Keiko Sato ◽  
Masahiro Murakawa

Aim: To investigate the anti-inflammatory effect of oxygen nanobubbles (ONBs) in an acute lung injury rat model. Materials & methods: In a rat hydrochloric acid lung injury model, ONB fluid was administered intravenously in the ONB group (n = 6) and normal saline was administered in the control group (n = 6). 4 h later, arterial partial pressure of oxygen (PaO2), mean arterial pressure and plasma inflammatory cytokines were measured. Results: There were no significant differences in the PaO2, mean arterial pressure or TNF-α and IL-6 levels between the two groups. Conclusions: No anti-inflammatory effect could be confirmed at the present ONB dose in the rat model of acute lung injury.


2013 ◽  
Vol 23 (11) ◽  
pp. 1069-1077 ◽  
Author(s):  
Pablo Cruces ◽  
Benjamín Erranz ◽  
Alejandro Donoso ◽  
Cristóbal Carvajal ◽  
Tatiana Salomón ◽  
...  

2020 ◽  
Vol 98 (8) ◽  
pp. 522-530
Author(s):  
Yinshan Wu ◽  
Weiliang Jiang ◽  
Zhuhua Lu ◽  
Wei Su ◽  
Nan Liu ◽  
...  

Acute lung injury (ALI), a disease with a high mortality rate, is a noncardiogenic pulmonary inflammatory response and characterized by damage to the pulmonary system. In this study, we explored the mechanism of the occurrence and development of ALI. It was firstly found that miR-138-5p could inhibit the expression of sirtuin1 (SIRT1), and we further demonstrated that miR-138-5p targets directly SIRT1 through the luciferase assay, while the latter negatively regulated the expression of NF-κB. A549 cells were treated with lipopolysaccharide in vitro to simulate ALI cells and induce ALI in the model mice. The results showed that inhibiting the expression of miR-138-5p could effectively increase the viability of damaged cells, promote cell proliferation, reduce apoptosis, inhibit the inflammatory response, reduce oxidative stress, and then relieve ALI symptoms. Collectively, our results suggested that miR-138-5p can inhibit SIRT1 expression and indirectly activate the NF-κB signaling pathway, thus regulating the development of ALI.


2021 ◽  
Vol 49 (5) ◽  
pp. 117-124
Author(s):  
Wenmei Liang ◽  
Li Guo ◽  
Tonghua Liu ◽  
Song Qin

Background: Sepsis is a systemic inflammatory response syndrome and leads to patient’s death. Objective: To investigate the effect of myocyte enhancer factor 2 (MEF2C) on acute lung injury (ALI) with sepsis and its possible mechanism.Material and Methods: The cecal ligation and puncture (CLP)-induced sepsis rat model was established. The lung injury was determined by lung wet–dry weight ratio, the concentration of inflammatory cytokines, including tumor necrosis factor-α (TNF-α), Interlukin (IL)-6, IL-1β, and IL-10, were measured by the enzyme-linked-immunosorbent serologic assay kit. The cell apoptosis was detected by TUNEL staining assay.Results: Interestingly, MEF2C was down-regulated in this model. Moreover, adeno-associated virus (AAV)-MEF2C treatment markedly suppressed TNF-α, IL-1β, and IL-6 concentrations but promoted IL-10 concentration in serum in CLP-challenged rats. Besides, overexpression of MEF2C alleviates CLP-induced lung injury. Interestingly, AAV-MEF2C treatment was confirmed to suppress apoptosis in CLP-induced sepsis rats as well as promote aquaporin APQ1 expres-sion. Mechanistically, the rescue experiments indicated that MEF2C alleviated CLP-induced lung inflammatory response and apoptosis via up-regulating AQP1.Conclusion: In summary, overexpression of MEF2C suppressed CLP-induced lung inflamma-tory response and apoptosis via up-regulating AQP1, providing a novel therapeutic target for sepsis-induced ALI.


2021 ◽  
Author(s):  
yangyang ge ◽  
Chenchen wang ◽  
Yuduo Zhen ◽  
Junjie Luo ◽  
jiayi chen ◽  
...  

Background: Acute respiratory distress syndrome (ARDS) remains a challenge because of its high morbidity and mortality. Circulation histones levels in ARDS patients were correlated to disease severity and mortality. This study examined the impact of histone neutralization in a rat model of acute lung injury (ALI) induced by a lipopolysaccharide (LPS) double-hit. Methods: Sixty-eight male Sprague-Dawley rats were randomized to sham (N=8, received saline only) or LPS (N=60). The LPS double-hit consisted of a 0.8 mg/kg intraperitoneal injection followed after 16 hours by 5 mg/kg intra-tracheal nebulized LPS. The LPS group was then randomized into five groups: LPS only (N=12); LPS + 5, 25, or 100 mg/kg intravenous STC3141 every 8 hours (LPS+L, LPS+M, LPS+H, respectively, each N=12); or LPS + intraperitoneal dexamethasone 2.5 mg/kg every 24 hours for 56 hours (LPS+D, N=12) The animals were observed for 72 hours. Results: LPS animals developed ALI as suggested by lower oxygenation, lung edema formation, and histological changes compared to the sham animals. Compared to the LPS group, LPS+H and +D animals had significantly lower circulating histone levels; only the LPS+D group had significantly lower bronchoalveolar lavage fluid (BALF) histone concentrations. The LPS+L, +M, +H and +D groups had improved oxygenation compared to the LPS group and the LPS+H and +D groups had a lower lung wet-to-dry ratio. All animals survived. Conclusion: Neutralization of histone using STC3141, especially at high dose, had similar therapeutic effects to dexamethasone in this LPS double-hit rat ALI model, with significantly decreased circulating histone concentration, improved oxygenation, and decreased lung edema formation. Keywords: ALI, ARDS, histone, histone neutralization, STC3141, rat LPS model


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xia Liu ◽  
Fei Ai ◽  
Hui Li ◽  
Qin Xu ◽  
Liyan Mei ◽  
...  

Shenfu injection (SFI), a Chinese herbal medicine with substances extracted from Ginseng Radix et Rhizoma Rubra and Aconiti Lateralis Radix Praeparata, is widely used as an anti-inflammatory reagent to treat endotoxin shock in China. However, the mechanism of SFI in endotoxin shock remains to be illuminated. High mobility group box 1 (HMGB1), a vital inflammatory factor in the late stage of endotoxin shock, may stimulate multiple signalling cascades, including κB (NF-κB), a nuclear transcription factor, as well as tumour necrosis factor (TNF)-α and interleukin (IL)-1β, among others in the overexpression of downstream proinflammatory cytokines. An investigation into the effects of SFI on the inhibition of the HMGB1-NF-κB pathway revealed the contribution of SFI to acute lung injury (ALI) in a rat model of endotoxin shock. To assess the anti-inflammatory activity of SFI, 5 ml/kg, 10 ml/kg, or 15 ml/kg of SFI was administered to different groups of rats following an injection of LPS, and the mean arterial pressure (MAP) at 5 h and the survival rate at 72 h were measured. 24 h after LPS injection, we observed pathological changes in the lung tissue and measured the mRNA expression, production, translocation, and secretion of HMGB1, as well as the expression of the NF-κB signal pathway-related proteins inhibitor of NF-κB (IκB)-α, P50, and P65. We also evaluated the regulation of SFI on the secretion of inflammatory factors including interleukin-1 beta (IL-1β) and TNF-α. SFI effectively prevented the drop in MAP, relieved lung tissue damage, and increased the survival rate in the endotoxin shock model in dose-dependent manner. SFI inhibited the transcription, expression, translocation, and secretion of HMGB1, increased the expression of toll-like receptor (TLR4), increased the production of IκB-α, and decreased the levels of P65, P50, and TNF-α in the lung tissue of endotoxin shock rats in a dose-dependent manner. Furthermore, SFI decreased the secretion of proinflammatory cytokines TNF-α and IL-1β. In summary, SFI improves the survival rate of endotoxin shock, perhaps through inhibiting the HMGB1-NF-κB pathway and thus preventing cytokine storm.


Sign in / Sign up

Export Citation Format

Share Document