scholarly journals Nonlinear Static and Dynamic Stiffness Characteristics of Support Hydraulic System of TBM

2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Jianfeng Tao ◽  
Junbo Lei ◽  
Chengliang Liu ◽  
Wei Yuan

AbstractFull-face hard rock tunnel boring machines (TBM) are essential equipment in highway and railway tunnel engineering construction. During the tunneling process, TBM have serious vibrations, which can damage some of its key components. The support system,an important part of TBM, is one path through which vibrational energy from the cutter head is transmitted. To reduce the vibration of support systems of TBM during the excavation process, based on the structural features of the support hydraulic system, a nonlinear dynamical model of support hydraulic systems of TBM is established. The influences of the component structure parameters and operating conditions parameters on the stiffness characteristics of the support hydraulic system are analyzed. The analysis results indicate that the static stiffness of the support hydraulic system consists of an increase stage, stable stage and decrease stage. The static stiffness value increases with an increase in the clearances. The pre-compression length of the spring in the relief valve affects the range of the stable stage of the static stiffness, and it does not affect the static stiffness value. The dynamic stiffness of the support hydraulic system consists of a U-shape and reverse U-shape. The bottom value of the U-shape increases with the amplitude and frequency of the external force acting on the cylinder body, however, the top value of the reverse U-shape remains constant. This study instructs how to design the support hydraulic system of TBM.

2012 ◽  
Vol 187 ◽  
pp. 46-52
Author(s):  
Jian Hua Wei ◽  
Heng Du ◽  
Hai Lin

A simplified nonlinear model in time domain and a linear model of hydro-pneumatic suspension in frequency domain were established and the expression of static stiffness and dynamic stiffness of hydro-pneumatic suspension were derived out. The expression of dynamic stiffness contains the static stiffness. Equivalent static stiffness rises with tire stiffness increasing, with the pressure of non-rod cavity of suspension cylinder increasing and with the initial position of suspension cylinder decreasing. Dynamic stiffness related to frequency increases dramatically as the frequency increases. The concept of the dynamic stiffness was proposed. The vibration characteristics of hydro-pneumatic suspension in the view of frequency domain can be analyzed and it is the reference to analyze the stiffness characteristics for suspension.


Author(s):  
Zhigang Li ◽  
Jun Li ◽  
Zhenping Feng

Annular gas seals for compressors and turbines are designed to operate in a nominally centered position in which the rotor and stator are at concentric condition, but due to the rotor–stator misalignment or flexible rotor deflection, many seals usually are suffering from high eccentricity. The centering force (represented by static stiffness) of an annular gas seal at eccentricity plays a pronounced effect on the rotordynamic and static stability behavior of rotating machines. The paper deals with the leakage and static stability behavior of a fully partitioned pocket damper seal (FPDS) at high eccentricity ratios. The present work introduces a novel mesh generation method for the full 360 deg mesh of annular gas seals with eccentric rotor, based on the mesh deformation technique. The leakage flow rates, static fluid-induced response forces, and static stiffness coefficients were solved for the FPDS at high eccentricity ratios, using the steady Reynolds-averaged Navier–Stokes solution approach. The calculations were performed at typical operating conditions including seven rotor eccentricity ratios up to 0.9 for four rotational speeds (0 rpm, 7000 rpm, 11,000 rpm, and 15,000 rpm) including the nonrotating condition, three pressure ratios (0.17, 0.35, and 0.50) including the choked exit flow condition, two inlet preswirl velocities (0 m/s, 60 m/s). The numerical method was validated by comparisons to the experiment data of static stiffness coefficients at choked exit flow conditions. The static direct and cross-coupling stiffness coefficients are in reasonable agreement with the experiment data. An interesting observation stemming from these numerical results is that the FPDS has a positive direct stiffness as long as it operates at subsonic exit flow conditions; no matter the eccentricity ratio and rotational speed are high or low. For the choked exit condition, the FPDS shows negative direct stiffness at low eccentricity ratio and then crosses over to positive value at the crossover eccentricity ratio (0.5–0.7) following a trend indicative of a parabola. Therefore, the negative static direct stiffness is limited to the specific operating conditions: choked exit flow condition and low eccentricity ratio less than the crossover eccentricity ratio, where the pocket damper seal (PDS) would be statically unstable.


Author(s):  
W. Dempster ◽  
C. K. Lee ◽  
J. Deans

The design of safety relief valves depends on knowledge of the expected force-lift and flow-lift characteristics at the desired operating conditions of the valve. During valve opening the flow conditions change from seal-leakage type flows to combinations of sub-sonic and supersonic flows It is these highly compressible flow conditions that control the force and flow lift characteristics. This paper reports the use of computational fluid dynamics techniques to investigate the valve characteristics for a conventional spring operated 1/4” safety relief valve designed for gases operating between 10 and 30 bar. The force and flow magnitudes are highly dependent on the lift and geometry of the valve and these characteristics are explained with the aid of the detailed information available from the CFD analysis. Experimental determination of the force and flow lift conditions has also been carried out and a comparison indicates good correspondence between the predictions and the experiment. However, attention requires to be paid to specific aspects of the geometry modeling including corner radii and edge chamfers to ensure satisfactory prediction.


2012 ◽  
Vol 248 ◽  
pp. 69-73 ◽  
Author(s):  
Shu Ming Chen ◽  
Xue Wei Song ◽  
Chuan Liang Shen ◽  
Deng Feng Wang ◽  
Wei Li

In order to know the static stiffness characteristics of the vehicle body in white, the bending stiffness and torsional stiffness of an automotive body in white were tested on a test bench of the static stiffness of an automotive BIW. The bending stiffness and bending deformation of the bottom of the BIW were determined. Also, the torsional stiffness and torsional deformation of the bottom of the BIW were obtained. The fitting curves and equations between loading torque and torsional angle were acquired at clockwise and counterclockwise loading, respectively.


1974 ◽  
Vol 188 (1) ◽  
pp. 189-199 ◽  
Author(s):  
B. O. Helgestad ◽  
K. Foster ◽  
F. K. Bannister

A method is given for calculating pressure transients in an axial piston hydraulic pump. Some theoretical predictions are given of the effect of port timing and the effect of introducing restricting grooves at the ends of the kidney ports in the valve plate and suggestions are made of the effects of these parameters on noise emission; comparative measurements of noise are then quoted that support the general arguments. A parallel shot is recommended as the best compromise for the restrictor groove geometry to give good results over the widest range of operating conditions, including reverse rotation. Finally, mention is made of the use of a relief valve in the port plate for noise reduction.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jianlei Liu ◽  
Meng Ma ◽  
Flavio Stochino

The bearing capacity evaluation of bridge substructures is difficult as the static loading test (SLT) cannot be employed for the bridges in services. As a type of dynamic nondestructive test technique, the dynamic transient response method (TRM) could be employed to estimate the vertical bearing capacity when the relationship between static stiffness and dynamic stiffness is known. The TRM is usually employed to evaluate single piles. For the pier-cap-pile system, its applicability should be investigated. In the present study, a novel full-scale experimental study, including both TRM test and SLT, was performed on an abandoned bridge pier with grouped pile foundation. The test included three steps: firstly, testing the intact pier-cap-pile system; then, cutting off the pier and testing the cap-pile system; finally, cutting off the cap and testing the single pile. The TRM test was repeatedly performed in the above three steps, whereas the SLT was only performed on the cap-pile system. Based on the experimental results, the ratio of dynamic and static stiffness of the cap-pile system was obtained. The results show that (1) in the low-frequency range (between 10 and 30 Hz in this study), the dynamic stiffness of the whole system is approximately four times of that of a single pile; (2) the ratio of dynamic and static stiffness of the cap-pile system tested in the study is approximately 1.74, which was similar to other tested values of a single pile; (3) to evaluate the capacity of similar cap-pile system and with similar soil layer conditions by TRM, the value of Kd/Ks tested in the study can be used as a reference.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Miaomiao Li ◽  
Jian Chen ◽  
Rupeng Zhu ◽  
Cheng Duan ◽  
Shuai Wang ◽  
...  

At higher velocities, the helicopter tail transmission system encounters notable difficulties due to excessive bending vibrations. The shaft damping ring installed on the shaft system was shown to effectively suppress the shaft system vibrations. In this paper, the dynamic stiffness and damping characteristics of polyurethane shaft damping rings were studied using hyperelastic and viscoelastic constitutive models. The constitutive model and the damping ring material parameters were determined using uniaxial tensile and double-shear frequency scanning tests. Based on the test results, the dynamic damping ring characteristics were simulated and verified by dynamic stiffness tests; the influence of structural parameters and operating conditions on the dynamic stiffness and damping characteristics of the damping ring were obtained. The results provide a theoretical basis for the design of shaft systems with reduced sensitivity to vibrations.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4460 ◽  
Author(s):  
Yunzhao Jia ◽  
Minqiang Xu ◽  
Rixin Wang

Hydraulic pump is a driving device of the hydraulic system, always working under harsh operating conditions, its fault diagnosis work is necessary for the smooth running of a hydraulic system. However, it is difficult to collect sufficient status information in practical operating processes. In order to achieve fault diagnosis with poor information, a novel fault diagnosis method that is the based on Symbolic Perceptually Important Point (SPIP) and Hidden Markov Model (HMM) is proposed. Perceptually important point technology is firstly imported into rotating machine fault diagnosis; it is applied to compress the original time-series into PIP series, which can depict the overall movement shape of original time series. The PIP series is transformed into symbolic series that will serve as feature series for HMM, Genetic Algorithm is used to optimize the symbolic space partition scheme. The Hidden Markov Model is then employed for fault classification. An experiment involves four operating conditions is applied to validate the proposed method. The results show that the fault classification accuracy of the proposed method reaches 99.625% when each testing sample only containing 250 points and the signal duration is 0.025 s. The proposed method could achieve good performance under poor information conditions.


2013 ◽  
Vol 37 (3) ◽  
pp. 395-403
Author(s):  
Dongjun Shin ◽  
Zhan Fan Quek

Due to the limited control bandwidth of pneumatic artificial muscles, joint stiffness characteristics and their effects on safety and performance of human-friendly robots should be considered in the frequency domain. This paper introduces the concept of effective dynamic stiffness and validates its model with the Stanford Safety Robot. Experimental results show that the dynamic stiffness demonstrates limited effects on the impact acceleration given the same impact velocity and controller gain, whereas it significantly affects control performance of position tracking due to pressure-induced non-linearities. A stiffness optimization strategy for safety and performance is discussed as a design guideline of human-friendly robots.


2004 ◽  
Vol 129 (1) ◽  
pp. 154-161 ◽  
Author(s):  
Mohsen Salehi ◽  
Hooshang Heshmat ◽  
James F. Walton

This paper presents the results of an experimental investigation into the dynamic structural stiffness and damping characteristics of a 21.6‐cm(8.5in.)-diameter compliant surface foil journal bearing. The goal of this development was to achieve high levels of damping without the use of oil, as is used in squeeze film dampers, while maintaining a nearly constant dynamic stiffness over a range of frequencies and amplitudes of motion. In the experimental work described herein, a full compliant foil bearing was designed, fabricated, and tested. The test facility included a non-rotating journal located inside the bearing. The journal was connected to an electrodynamic shaker so that dynamic forces simulating expected operating conditions could be applied to the structurally compliant bump foil elements. Excitation test frequencies to a maximum of 400Hz at amplitudes of motion between 25.4 and 102μm were applied to the damper assembly. During testing, both compressive preload and unidirectional static loads of up to 1335 and 445N, respectively, were applied to the damper assembly. The experimental data from these tests were analyzed using both a single degree of freedom model and an energy method. These methods of data analysis are reviewed here and results are compared. Excellent agreement in results obtained from the two methods was achieved. Equivalent viscous damping coefficients as high as 1050N.s∕cm(600lbf.s∕in) were obtained at low frequencies. Dynamic stiffness was shown to be fairly constant with frequency.


Sign in / Sign up

Export Citation Format

Share Document