scholarly journals White matter changes in chronic and episodic migraine: a diffusion tensor imaging study

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Álvaro Planchuelo-Gómez ◽  
David García-Azorín ◽  
Ángel L. Guerrero ◽  
Santiago Aja-Fernández ◽  
Margarita Rodríguez ◽  
...  

Abstract Background White matter alterations have been observed in patients with migraine. However, no microstructural white matter alterations have been found particularly in episodic or chronic migraine patients, and there is limited research focused on the comparison between these two groups of migraine patients. Methods Fifty-one healthy controls, 55 episodic migraine patients and 57 chronic migraine patients were recruited and underwent brain T1-weighted and diffusion-weighted MRI acquisition. Using Tract-Based Spatial Statistics (TBSS), fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity were compared between the different groups. On the one hand, all migraine patients were compared against healthy controls. On the other hand, patients from each migraine group were compared between them and also against healthy controls. Correlation analysis between clinical features (duration of migraine in years, time from onset of chronic migraine in months, where applicable, and headache and migraine frequency, where applicable) and Diffusion Tensor Imaging measures was performed. Results Fifty healthy controls, 54 episodic migraine and 56 chronic migraine patients were finally included in the analysis. Significant decreased axial diffusivity (p < .05 false discovery rate and by number of contrasts corrected) was found in chronic migraine compared to episodic migraine in 38 white matter regions from the Johns Hopkins University ICBM-DTI-81 White-Matter Atlas. Significant positive correlation was found between time from onset of chronic migraine and mean fractional anisotropy in the bilateral external capsule, and negative correlation between time from onset of chronic migraine and mean radial diffusivity in the bilateral external capsule. Conclusions These findings suggest global white matter structural differences between episodic migraine and chronic migraine. Patients with chronic migraine could present axonal integrity impairment in the first months of chronic migraine with respect to episodic migraine patients. White matter changes after the onset of chronic migraine might reflect a set of maladaptive plastic changes.

2020 ◽  
Vol 10 (10) ◽  
pp. 711
Author(s):  
Álvaro Planchuelo-Gómez ◽  
David García-Azorín ◽  
Ángel L. Guerrero ◽  
Rodrigo de Luis-García ◽  
Margarita Rodríguez ◽  
...  

The white matter state in migraine has been investigated using diffusion tensor imaging (DTI) measures, but results using this technique are conflicting. To overcome DTI measures, we employed ensemble average diffusion propagator measures obtained with apparent measures using reduced acquisitions (AMURA). The AMURA measures were return-to-axis (RTAP), return-to-origin (RTOP) and return-to-plane probabilities (RTPP). Tract-based spatial statistics was used to compare fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity from DTI, and RTAP, RTOP and RTPP, between healthy controls, episodic migraine and chronic migraine patients. Fifty healthy controls, 54 patients with episodic migraine and 56 with chronic migraine were assessed. Significant differences were found between both types of migraine, with lower axial diffusivity values in 38 white matter regions and higher RTOP values in the middle cerebellar peduncle in patients with a chronic migraine (p < 0.05 family-wise error corrected). Significantly lower RTPP values were found in episodic migraine patients compared to healthy controls in 24 white matter regions (p < 0.05 family-wise error corrected), finding no significant differences using DTI measures. The white matter microstructure is altered in a migraine, and in chronic compared to episodic migraine. AMURA can provide additional results with respect to DTI to uncover white matter alterations in migraine.


Cephalalgia ◽  
2019 ◽  
Vol 40 (4) ◽  
pp. 367-383 ◽  
Author(s):  
Álvaro Planchuelo-Gómez ◽  
David García-Azorín ◽  
Ángel L Guerrero ◽  
Santiago Aja-Fernández ◽  
Margarita Rodríguez ◽  
...  

Objective To identify possible structural connectivity alterations in patients with episodic and chronic migraine using magnetic resonance imaging data. Methods Fifty-four episodic migraine, 56 chronic migraine patients and 50 controls underwent T1-weighted and diffusion-weighted magnetic resonance imaging acquisitions. Number of streamlines (trajectories of estimated fiber-tracts), mean fractional anisotropy, axial diffusivity and radial diffusivity were the connectome measures. Correlation analysis between connectome measures and duration and frequency of migraine was performed. Results Higher and lower number of streamlines were found in connections involving regions like the superior frontal gyrus when comparing episodic and chronic migraineurs with controls ( p < .05 false discovery rate). Between the left caudal anterior cingulate and right superior frontal gyri, more streamlines were found in chronic compared to episodic migraine. Higher and lower fractional anisotropy, axial diffusivity, and radial diffusivity were found between migraine groups and controls in connections involving regions like the hippocampus. Lower radial diffusivity and axial diffusivity were found in chronic compared to episodic migraine in connections involving regions like the putamen. In chronic migraine, duration of migraine was positively correlated with fractional anisotropy and axial diffusivity. Conclusions Structural strengthening of connections involving subcortical regions associated with pain processing and weakening in connections involving cortical regions associated with hyperexcitability may coexist in migraine.


2015 ◽  
Vol 28 (3) ◽  
pp. 141-148 ◽  
Author(s):  
Tue Hartmann ◽  
Sanne Vandborg ◽  
Raben Rosenberg ◽  
Leif Sørensen ◽  
Poul Videbech

BackgroundPrevious morphology and diffusion-imaging studies have suggested that structural changes in white matter is an important part of the pathophysiology of obsessive–compulsive disorder (OCD). However, different methodological approaches and the heterogeneity of patient samples question the validity of the findings.Materials and methodsIn total, 30 patients were matched for age and sex with 30 healthy controls. All participants underwent T1-weighted magnetic resonance imaging, diffusion tensor imaging and T2 fluid-attenuated inversion recovery. Voxel-based morphometry and tract-based spatial statistics were used to compare white matter volumes and diffusion tensor imaging between groups. These data were analysed correcting for the effects of multiple comparisons, age, sex, severity and duration of illness as nuisance covariates. White matter hyperintensities were manually identified.ResultsIncrease in fractional anisotropy in cerebellum was the most prominent result. A decrease in fractional anisotrophy in patients comparable with previous studies was located in forceps minor. There were no differences in the white matter morphology or in the white matter hyperintensities between patients and healthy controls.ConclusionDecrease in fractional anisotrophy in forceps minor and increase in cerebellum were found, and they were not due to neither white matter hyperintensities nor morphology of the white matter. Cerebellar hyperconnectivity could be an important part of OCD pathophysiology.


Author(s):  
Quanquan Gu ◽  
Peiyu Huang ◽  
Min Xuan ◽  
Xiaojun Xu ◽  
Dan Li ◽  
...  

ABSTRACTBackground: Patients with the postural instability and gait difficulty (PIGD) subtype of Parkinson disease (PD) are at a higher risk of dysfunction and are less responsive to dopamine replacement therapy. The PIGD subtype was found to largely associate with white matter lesions, but details of the diffusion changes within these lesions have not been fully investigated. Voxel-based analysis for diffusion tensor imaging data is one of the preferred measures to compare diffusion changes in each voxel in any part of the brain. Methods: PD patients with the PIGD (n=12) and non-PIGD subtypes (n=12) were recruited to compare diffusion differences in fractional anisotropy, axial diffusivity, and radial diffusivity with voxel-based analysis. Results: Significantly reduced fractional anisotropy in bilateral superior longitudinal fasciculus, bilateral anterior corona radiata, and the left genu of the corpus callosum were shown in the PIGD subtype compared with the non-PIGD subtype. Increased radial diffusivity in the left superior longitudinal fasciculus was found in the PIGD subtype with no statistical differences in axial diffusivity found. Conclusions: Our study confirms previous findings that white matter abnormalities were greater in the PIGD subtype than in the non-PIGD subtype. Additionally, our findings suggested: (1) compared with the non-PIGD subtype, loss of white matter integrity was greater in the PIGD subtype; (2) bilateral superior longitudinal fasciculus may play a critical role in microstructural white matter abnormalities in the PIGD subtype; and (3) reduced white matter integrity in the PIGD subtype could be mainly attributed to demyelination rather than axonal loss.


2017 ◽  
Vol 7 (1) ◽  
pp. 52-73 ◽  
Author(s):  
Karine Marcotte ◽  
Naida L. Graham ◽  
Kathleen C. Fraser ◽  
Jed A. Meltzer ◽  
David F. Tang-Wai ◽  
...  

Differential patterns of white matter disruption have recently been reported in the non-fluent (nfvPPA) and semantic (svPPA) variants of primary progressive aphasia (PPA). No single measure is sufficient to distinguish between the PPA variants, but connected speech allows for the quantification of multiple measures. The aim of the present study was to further investigate the white matter correlates associated with connected speech features in PPA. We examined the relationship between white matter metrics and connected speech deficits using an automated analysis of transcriptions of connected speech and diffusion tensor imaging in language-related tracts. Syntactic, lexical, and semantic features were automatically extracted from transcriptions of topic-directed interviews conducted with groups of individuals with nfvPPA or svPPA as well as with a group of healthy controls. A principal component analysis was performed in order to reduce the number of language measures and yielded a five-factor solution. The results indicated that nfvPPA patients differed from healthy controls on a syntactic factor, and svPPA patients differed from controls on two semantic factors. However, the patient groups did not differ on any factor. Moreover, a correlational analysis revealed that the lexical richness factor was significantly correlated with radial diffusivity in the left inferior longitudinal fasciculus, which suggests that semantic deficits in connected speech reflect a disruption of this ventral pathway, and which is largely consistent with the results of previous studies. Using an automated approach for the analysis of connected speech combined with probabilistic tractography, the present findings demonstrate that nfvPPA patients are impaired relative to healthy controls on syntactic measures and have increased radial diffusivity in the left superior longitudinal fasciculus, whereas the svPPA group was impaired on lexico-semantic measures relative to controls and showed increased radial diffusivity in the uncinate and inferior longitudinal fasciculus bilaterally.


2016 ◽  
Vol 37 (11) ◽  
pp. 3821-3834 ◽  
Author(s):  
Melissa A. Lancaster ◽  
Daniel V. Olson ◽  
Michael A. McCrea ◽  
Lindsay D. Nelson ◽  
Ashley A. LaRoche ◽  
...  

2012 ◽  
Vol 18 (9) ◽  
pp. 1259-1268 ◽  
Author(s):  
Eric C Klawiter ◽  
Junqian Xu ◽  
Robert T Naismith ◽  
Tammie LS Benzinger ◽  
Joshua S Shimony ◽  
...  

Background: Multiple sclerosis (MS) and neuromyelitis optica (NMO) both affect spinal cord with notable differences in pathology. Objective: Determine the utility of diffusion tensor imaging (DTI) to differentiate the spinal cord lesions of NMO from MS within and outside T2 lesions. Methods: Subjects greater than or equal to 12 months from a clinical episode of transverse myelitis underwent a novel transaxial cervical spinal cord DTI sequence. Ten subjects with NMO, 10 with MS and 10 healthy controls were included. Results: Within T2 affected white matter regions, radial diffusivity was increased in both NMO and MS compared with healthy controls ( p<0.001, respectively), and to a greater extent in NMO than MS ( p<0.001). Axial diffusivity was decreased in T2 lesions in both NMO and MS compared with controls ( p<0.001, p=0.001), but did not differ between the two diseases. Radial diffusivity and fractional anisotropy within white matter regions upstream and downstream of T2 lesions were different from controls in each disease. Conclusions: Higher radial diffusivity within spinal cord white matter tracts derived from diffusion tensor imaging were appreciated in NMO compared with MS, consistent with the known greater tissue destruction seen in NMO. DTI also detected tissue alterations outside T2 lesions and may be a surrogate of anterograde and retrograde degeneration.


2019 ◽  
pp. 174749301989570
Author(s):  
Mark R Etherton ◽  
Ona Wu ◽  
Anne-Katrin Giese ◽  
Natalia S Rost

Background White matter hyperintensity of presumed vascular origin is a risk factor for poor stroke outcomes. In patients with acute ischemic stroke, however, the in vivo mechanisms of white matter microstructural injury are less clear. Aims To characterize the directional diffusivity components in normal-appearing white matter and white matter hyperintensity in acute ischemic stroke patients. Methods A retrospective analysis was performed on a cohort of patients with acute ischemic stroke and brain magnetic resonance imaging with diffusion tensor imaging sequences acquired within 48 h of admission. White matter hyperintensity volume was measured in a semi-automated manner. Median fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity values were calculated within normal-appearing white matter and white matter hyperintensity in the hemisphere contralateral to the acute infarct. Linear regression analysis was performed to evaluate predictors of white matter hyperintensity volume and normal-appearing white matter diffusivity metrics. Results In 319 patients, mean age was 64.9 ± 15.9 years. White matter hyperintensity volume was 6.33 cm3 (interquartile range 3.0–12.6 cm3). Axial and radial diffusivity were significantly increased in white matter hyperintensity compared to normal-appearing white matter. In multivariable linear regression, age (β = 0.20, P = 0.003) and normal-appearing white matter axial diffusivity (β = 37.9, P < 0.001) were independently associated with white matter hyperintensity volume. Subsequent analysis demonstrated that increasing age (β = 0.004, P < 0.001) and admission diastolic blood pressure (β = 0.001, P = 0.02) were independent predictors of normal-appearing white matter axial diffusivity in multivariable linear regression. Conclusions Normal-appearing white matter axial diffusivity increases with age and is an independent predictor of white matter hyperintensity volume in acute ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document