scholarly journals Antibacterial Activity of In Situ Prepared Chitosan/Silver Nanoparticles Solution Against Methicillin-Resistant Strains of Staphylococcus aureus

2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Viktoriia Holubnycha ◽  
Oksana Kalinkevich ◽  
Olena Ivashchenko ◽  
Maksym Pogorielov
2021 ◽  
Vol 21 (10) ◽  
pp. 5120-5130
Author(s):  
Hui Long ◽  
Wei-Cong Kuang ◽  
Shi-Liang Wang ◽  
Jing-Xian Zhang ◽  
Lang-Huan Huang ◽  
...  

Poly(cyclotriphosphazene-co-4,4’-diaminodiphenyl ether) (PPO) microspheres were prepared via a precipitation polymerization method, using hexachlorocyclotriphosphazene (HCCP) and 4,4’-diaminodiphenyl ether (ODA) as monomers. Silver-loaded PPO (PPOA) microspheres were generated by the in situ loading of silver nanoparticles onto the surface by Ag+ reduction. Our results showed that PPOA microspheres were successfully prepared with a relatively uniform distribution of silver nanoparticles on microsphere surfaces. PPOA microspheres had good thermal stability and excellent antibacterial activity towards Escherichia coli and Staphylococcus aureus. Furthermore, PPOA microspheres exhibited lower cytotoxicity when compared to citrate-modified silver nanoparticles (c-Ag), and good sustained release properties. Our data indicated that polyphosphazene-based PPOA microspheres are promising antibacterial agents in the biological materials field.


2021 ◽  
Author(s):  
Ifeyomi Wilfred Olobayotan ◽  
Bukola Catherine Akin-Osanaiye ◽  
Olukemi A. Onuh

Antibacterial activity of biosynthesized silver nanoparticles was studied using the macrobroth dilution technique. The silver nanoparticles was significantly active (p > 0.05) against the test organisms at an extract concentration of 75 µg/ml. Concentrations ≤ 50 µg/ml were not as effective as the colony forming units at this concentration, 1.61 x 106 for methicillin-resistant Staphylococcus aureus and concentrations ≤ 25 µg/ml 1.45 x 106 for Pseudomonas aeruginosa respectively, were about the same range as the colony forming units of the controls. The silver nanoparticles inhibited Methicillin-Resistant S. aureus more (MIC of 75 µg/ml and MBC of 100 µg/ml) than they inhibited P. aeruginosa (both MIC and MBC was 100 µg/ml). The LD50 of the synthesized silver nanoparticles after oral administration was seen to be greater than 5000 mg/kg body weight and is therefore thought to be safe. This study supports the use of silver nanoparticles as therapeutic agents. KEYWORDS: Nanoparticles, Biosynthesis, Inhibition, Therapeutic agents, Macroboth Technique


2021 ◽  
Author(s):  
Thu Ha Bui ◽  
Ngoc Dai Nghia Tran ◽  
Phung Anh Nguyen ◽  
Nhat Linh Duong ◽  
Van Minh Nguyen ◽  
...  

Abstract A cost-effective and green technique was performed for the synthesis of silver nanoparticles (AgNPs) from a plant resource using Citrus maxima peel (CMP) extract as a reducing agent. The formation of AgNPs was confirmed by UV-Vis Spectroscopy at the wavelength range of 400−500 nm. The optimized conditions for the AgNPs synthesis using CMP extract as a reducing agent were determined. At these conditions, the X-ray diffraction (XRD) and the high-resolution transmission electron microscopy (HRTEM) results revealed the face-centered cubic structure of AgNPs had a highly crystalline with the particle size in a range of 10−20 nm. The Fourier transform infrared spectroscopy (FT-IR) demonstrated the presence of flavonoid, terpenoid, phenolic, and glycosides in phytochemical compositions of CMP extract which can act as the reducing agents for AgNPs formation. The antibacterial effect of the AgNPs was evaluated against Methicillin-resistant Staphylococcus aureus (MRSA) by implementing the minimum inhibitory concentration (MIC), minimum batericidal concentration (MBC), and the zone of inhibition tests. The AgNPs exhibited effective antibacterial activity against bacteria with an average diameter of inhibition zones of 11.7 mm, the MIC of 8.27 µg/mL, and the MBC of the 16.54 µg/mL.


Sign in / Sign up

Export Citation Format

Share Document