scholarly journals Maintenance of Sympatric and Allopatric Populations in Free-Living Terrestrial Bacteria

mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Alexander B. Chase ◽  
Philip Arevalo ◽  
Eoin L. Brodie ◽  
Martin F. Polz ◽  
Ulas Karaoz ◽  
...  

ABSTRACT For free-living bacteria and archaea, the equivalent of the biological species concept does not exist, creating several obstacles to the study of the processes contributing to microbial diversification. These obstacles are particularly high in soil, where high bacterial diversity inhibits the study of closely related genotypes and therefore the factors structuring microbial populations. Here, we isolated strains within a single Curtobacterium ecotype from surface soil (leaf litter) across a regional climate gradient and investigated the phylogenetic structure, recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. Our results indicate that microbial populations are delineated by gene flow discontinuities, with distinct populations cooccurring at multiple sites. Bacterial population structure was further delineated by genomic features allowing for the identification of candidate genes possibly contributing to local adaptation. These results suggest that the genetic structure within this bacterium is maintained both by ecological specialization in localized microenvironments (isolation by environment) and by dispersal limitation between geographic locations (isolation by distance). IMPORTANCE Due to the promiscuous exchange of genetic material and asexual reproduction, delineating microbial species (and, by extension, populations) remains challenging. Because of this, the vast majority of microbial studies assessing population structure often compare divergent strains from disparate environments under varied selective pressures. Here, we investigated the population structure within a single bacterial ecotype, a unit equivalent to a eukaryotic species, defined as highly clustered genotypic and phenotypic strains with the same ecological niche. Using a combination of genomic and computational analyses, we assessed the phylogenetic structure, extent of recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. To our knowledge, this study is the first to do so for a dominant soil bacterium. Our results indicate that bacterial soil populations, similarly to those in other environments, are structured by gene flow discontinuities and exhibit distributional patterns consistent with both isolation by distance and isolation by environment. Thus, both dispersal limitation and local environments contribute to the divergence among closely related soil bacteria as observed in macroorganisms.

2019 ◽  
Author(s):  
Alexander B. Chase ◽  
Philip Arevalo ◽  
Eoin L. Brodie ◽  
Martin F. Polz ◽  
Ulas Karaoz ◽  
...  

ABSTRACTIn free-living bacteria and archaea, the equivalent of the biological species concept does not exist, creating several barriers to the study of the processes contributing to microbial diversification. As such, microorganisms are often operationally defined using conserved marker genes (i.e., 16S rRNA gene) or whole-genome measurements (i.e., ANI) to interpret intra-specific processes. However, as in eukaryotes, investigations into microbial populations must consider the potential for interacting genotypes among individuals that are subjected to similar environmental selective pressures. Therefore, we isolated 26 strains within a single bacterial ecotype (equivalent to a eukaryotic species definition) from a common habitat (leaf litter) across a regional climate gradient and asked whether the genetic diversity in a free-living soil bacterium (Curtobacterium) was consistent with patterns of allopatric or sympatric differentiation. By examining patterns of gene flow, our results indicate that microbial populations are delineated by gene flow discontinuities and exhibit evidence for population-specific adaptation. We conclude that the genetic structure within this bacterium is due to both adaptation within localized microenvironments (isolation-by-environment) as well as dispersal limitation between geographic locations (isolation-by-distance).


2014 ◽  
Vol 369 (1648) ◽  
pp. 20130342 ◽  
Author(s):  
Alexander S. T. Papadopulos ◽  
Maria Kaye ◽  
Céline Devaux ◽  
Helen Hipperson ◽  
Jackie Lighten ◽  
...  

It is now recognized that speciation can proceed even when divergent natural selection is opposed by gene flow. Understanding the extent to which environmental gradients and geographical distance can limit gene flow within species can shed light on the relative roles of selection and dispersal limitation during the early stages of population divergence and speciation. On the remote Lord Howe Island (Australia), ecological speciation with gene flow is thought to have taken place in several plant genera. The aim of this study was to establish the contributions of isolation by environment (IBE) and isolation by community (IBC) to the genetic structure of 19 plant species, from a number of distantly related families, which have been subjected to similar environmental pressures over comparable time scales. We applied an individual-based, multivariate, model averaging approach to quantify IBE and IBC, while controlling for isolation by distance (IBD). Our analyses demonstrated that all species experienced some degree of ecologically driven isolation, whereas only 12 of 19 species were subjected to IBD. The prevalence of IBE within these plant species indicates that divergent selection in plants frequently produces local adaptation and supports hypotheses that ecological divergence can drive speciation in sympatry.


2013 ◽  
Vol 45 (6) ◽  
pp. 799-813 ◽  
Author(s):  
Kyle M. FONTAINE ◽  
Elfie STOCKER-WÖRGÖTTER ◽  
Tom BOOTH ◽  
Michele D. PIERCEY-NORMORE

AbstractDermatocarpon luridum is a subaquatic lichen which is distributed within temperate climatic zones around the world. It colonizes rock substrata along the shoreline of lakes and rivers of watersheds that regularly experience water level fluctuations. The mycobiont produces perithecia with small, simple spores that are thought to be wind dispersed. The photobiont, Diplosphaera chodatii, occurs both free-living and lichenized but little is known about its distribution and dispersal. The goal of this study was to compare the population structure of the photobiont from lakes and rivers in central North America with those of Europe. Specimens were collected in Manitoba, Canada and Austria. Population structure of the algal symbiont was assessed using the internal transcribed spacer (ITS) of ribosomal DNA (rDNA) and actin gene sequences. Results showed that genetic diversity and gene flow was high within local populations, but gene flow was low between continental populations. Low levels of gene flow between the most distant populations support the isolation-by-distance theory. The photobiont on both continents is also reported to be the photobiont for other lichen species contributing to photobiont availability for D. luridum.


2021 ◽  
Author(s):  
Zachary L Nikolakis ◽  
Richard Orton ◽  
Brian I Crother

Understanding the processes and mechanisms that promote lineage divergence is a central goal in evolutionary biology. For instance, studies investigating the spatial distribution of genomic variation often highlight biogeographic barriers underpinning geographic isolation, as well as patterns of isolation by environment and isolation by distance that can also lead to lineage divergence. However, the patterns and processes that shape genomic variation and drive lineage divergence may be taxa-specific, even across closely related taxa co-occurring within the same biogeographic region. Here, we use molecular data in the form of ultra-conserved elements (UCEs) to infer the evolutionary relationships and population genomic structure of the Eastern Pinesnake complex (Pituophis melanoleucus) – a polytypic wide-ranging species that occupies much of the Eastern Nearctic. In addition to inferring evolutionary relationships, population genomic structure, and gene flow, we also test relationships between genomic diversity and putative barriers to dispersal, environmental variation, and geographic distance. We present results that reveal shallow population genomic structure and ongoing gene flow, despite an extensive geographic range that transcends geographic features found to reduce gene flow among many taxa, including other squamate reptiles within the Eastern Nearctic. Further, our results indicate that the observed genomic diversity is spatially distributed as a pattern of isolation by distance and suggest that the current subspecific taxonomy do not adhere to independent lineages, but rather, show a significant amount of admixture across the entire P. melanoleucus range.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Maysa Tiemi Motoki ◽  
Dina Madera Fonseca ◽  
Elliott Frederic Miot ◽  
Bruna Demari-Silva ◽  
Phoutmany Thammavong ◽  
...  

Abstract Background The Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse) is an important worldwide invasive species and can be a locally important vector of chikungunya, dengue and, potentially, Zika. This species is native to Southeast Asia where populations thrive in both temperate and tropical climates. A better understanding of the population structure of Ae. albopictus in Lao PDR is very important in order to support the implementation of strategies for diseases prevention and vector control. In the present study, we investigated the genetic variability of Ae. albopictus across a north-south transect in Lao PDR. Methods We used variability in a 1337-bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1), to assess the population structure of Ae. albopictus in Lao PDR. For context, we also examined variability at the same genetic locus in samples of Ae. albopictus from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA. Results We observed very high levels of genetic polymorphism with 46 novel haplotypes in Ae. albopictus from 9 localities in Lao PDR and Thailand populations. Significant differences were observed between the Luangnamtha population and other locations in Lao PDR. However, we found no evidence of isolation by distance. There was overall little genetic structure indicating ongoing and frequent gene flow among populations or a recent population expansion. Indeed, the neutrality test supported population expansion in Laotian Ae. albopictus and mismatch distribution analyses showed a lack of low frequency alleles, a pattern often seen in bottlenecked populations. When samples from Lao PDR were analyzed together with samples from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA, phylogenetic network and Bayesian cluster analysis showed that most populations from tropical/subtropical regions are more genetically related to each other, than populations from temperate regions. Similarly, most populations from temperate regions are more genetically related to each other, than those from tropical/subtropical regions. Conclusions Aedes albopictus in Lao PDR are genetically related to populations from tropical/subtropical regions (i.e. Thailand, Singapore, and California and Texas in the USA). The extensive gene flow among locations in Lao PDR indicates that local control is undermined by repeated introductions from untreated sites.


Author(s):  
Rhett M Rautsaw ◽  
Tristan D Schramer ◽  
Rachel Acuña ◽  
Lindsay N Arick ◽  
Mark DiMeo ◽  
...  

Abstract The migration-selection balance often governs the evolution of lineages, and speciation with gene flow is now considered common across the tree of life. Ecological speciation is a process that can facilitate divergence despite gene flow due to strong selective pressures caused by ecological differences; however, the exact traits under selection are often unknown. The transition from freshwater to saltwater habitats provides strong selection targeting traits with osmoregulatory function. Several lineages of North American watersnakes (Nerodia spp.) are known to occur in saltwater habitat and represent a useful system for studying speciation by providing an opportunity to investigate gene flow and evaluate how species boundaries are maintained or degraded. We use double digest restriction-site associated DNA sequencing to characterize the migration-selection balance and test for evidence of ecological divergence within the Nerodia fasciata-clarkii complex in Florida. We find evidence of high intraspecific gene flow with a pattern of isolation-by-distance underlying subspecific lineages. However, we identify genetic structure indicative of reduced gene flow between inland and coastal lineages suggesting divergence due to isolation-by-environment. This pattern is consistent with observed environmental differences where the amount of admixture decreases with increased salinity. Furthermore, we identify significantly enriched terms related to osmoregulatory function among a set of candidate loci, including several genes that have been previously implicated in adaptation to salinity stress. Collectively, our results demonstrate that ecological differences, likely driven by salinity, cause strong divergent selection which promotes divergence in the N. fasciata-clarkii complex despite significant gene flow.


2019 ◽  
Author(s):  
CW Ahrens ◽  
EA James ◽  
AD Miller ◽  
NC Aitken ◽  
JO Borevitz ◽  
...  

SummaryFragmented grassland ecosystems, and the species that shape them, are under immense pressure. Restoration and management strategies should include genetic diversity and adaptive capacity to improve success but these data are generally unavailable. Therefore, we use the foundational grass, Themeda triandra, to test how spatial, environmental, and ploidy factors shape patterns of genetic variation.We used reduced-representation genome sequencing on 487 samples from 52 locations to answer fundamental questions about how the distribution of genomic diversity and ploidy polymorphism supports adaptation to harsher climates. We explicitly quantified isolation-by-distance (IBD), isolation-by-environment (IBE), and predicted population genomic vulnerability in 2070.We found that a majority (54%) of the genomic variation could be attributed to IBD, while 22% of the genomic variation could be explained by four climate variables showing IBE. Results indicate that heterogeneous patterns of vulnerability across populations are due to genetic variation, multiple climate factors, and ploidy polymorphism, which lessened genomic vulnerability in the most susceptible populations.These results indicate that restoration and management of T. triandra should incorporate knowledge of genomic diversity and ploidy polymorphisms to increase the likelihood of population persistence and restoration success in areas that will become hotter and more arid.


2020 ◽  
Author(s):  
William S. Pearman ◽  
Sarah J. Wells ◽  
Olin K. Silander ◽  
Nikki E. Freed ◽  
James Dale

AbstractMarine organisms generally exhibit one of two developmental modes: biphasic, with distinct adult and larval morphology, and direct development, in which larvae resemble adults. Developmental mode is thought to significantly influence dispersal, with direct developers expected to have much lower dispersal potential. However, in contrast to our relatively good understanding of dispersal and population connectivity for biphasic species, comparatively little is known about direct developers. In this study, we use a panel of 8,020 SNPs to investigate population structure and gene flow for a direct developing species, the New Zealand endemic marine isopod Isocladus armatus. On a small spatial scale (20 kms), gene flow between locations is extremely high and suggests an island model of migration. However, over larger spatial scales (600km), populations exhibit a clear pattern of isolation-by-distance. Because our sampling range is intersected by two well-known biogeographic barriers (the East Cape and the Cook Strait), our study provides an opportunity to understand how such barriers influence dispersal in direct developers. Our results indicate that I. armatus exhibits significant migration across these barriers, and suggests that ocean currents associated with these locations do not present a barrier to dispersal. Interestingly, we do find evidence of a north-south population genetic break occurring between Māhia and Wellington, two locations where there are no obvious biogeographic barriers between them. We conclude that developmental life history largely predicts dispersal in intertidal marine isopods. However, localised biogeographic processes can disrupt this expectation.


2014 ◽  
Author(s):  
Desislava Petkova ◽  
John Novembre ◽  
Matthew Stephens

Genetic data often exhibit patterns that are broadly consistent with "isolation by distance" - a phenomenon where genetic similarity tends to decay with geographic distance. In a heterogeneous habitat, decay may occur more quickly in some regions than others: for example, barriers to gene flow can accelerate the genetic differentiation between groups located close in space. We use the concept of "effective migration" to model the relationship between genetics and geography: in this paradigm, effective migration is low in regions where genetic similarity decays quickly. We present a method to quantify and visualize variation in effective migration across the habitat, which can be used to identify potential barriers to gene flow, from geographically indexed large-scale genetic data. Our approach uses a population genetic model to relate underlying migration rates to expected pairwise genetic dissimilarities, and estimates migration rates by matching these expectations to the observed dissimilarities. We illustrate the potential and limitations of our method using simulations and data from elephant, human, and Arabidopsis thaliana populations. The resulting visualizations highlight important features of the spatial population structure that are difficult to discern using existing methods for summarizing genetic variation such as principal components analysis.


2015 ◽  
Vol 72 (10) ◽  
pp. 1477-1493 ◽  
Author(s):  
Les N. Harris ◽  
Robert Bajno ◽  
Colin P. Gallagher ◽  
Itsuro Koizumi ◽  
Lucy K. Johnson ◽  
...  

The northern Dolly Varden (Salvelinus malma malma) displays variable life-history types and occupies freshwater habitats with varying levels of connectivity. Here, we assayed microsatellite DNA variation in northern Dolly Varden from the western Canadian Arctic to resolve landscape and life-history variables driving variation in genetic diversity and population structure. Overall, genetic variation was highest in anadromous populations and lowest in those isolated above waterfalls, with stream-resident forms intermediate between the two. Anadromous and isolated populations were genetically divergent from each other, while no genetic differentiation was detectable between sympatric anadromous and stream-resident forms. Population structure was stable over 25 years, hierarchically organized, and conformed to an isolation-by-distance pattern, but stream-isolated forms often deviated from these patterns. Gene flow occurred primarily among Yukon North Slope populations and between sympatric anadromous and resident forms. These results were sex-dependent to some extent, but were influenced more by reproductive status and life history. Our study provides novel insights into the life history, population demographic, and habitat variables that shape the distribution of genetic variation and population structure in Arctic fluvial habitats while providing a spatial context for management and conservation.


Sign in / Sign up

Export Citation Format

Share Document