scholarly journals Quantitative analysis of cadmium in rice roots based on LIBS and chemometrics methods

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Wei Wang ◽  
Wenwen Kong ◽  
Tingting Shen ◽  
Zun Man ◽  
Wenjing Zhu ◽  
...  

Abstract Background Excessive cadmium can damage cell structure, inhibit enzyme activity, and affect metabolic process, thus, leading to decline of rice yield and quality. Root is an important organ of crops, the detection of cadmium in root is essential for limitation of cadmium in rice grains. Results In this study, laser-induced breakdown spectroscopy (LIBS) was applied for cadmium quantitative analysis. Pretreatment methods, including median absolute deviation, wavelet transform, area normalization, were used to improve spectral stability. Scanning electron microscope and energy-dispersive X-ray spectrometer (SEM/EDS) was first used to analyze ablation pit surface characteristics and the results showed significant positive correlation with spectral lines of Cd II 214.44, Cd II 226.50 and Cd I 228.80 nm. Univariable models of spectral lines showed that three Cd spectral lines have good prediction for cadmium. Fitting methods including linear, logarithmic, and polynomial were used to propose characteristic input variables, and univariable models based on variable of polynomial fitting of I214.44 nm have achieved the best effect (Rp = 0.9821 and RMSEP = 31.1 mg/kg). Besides, partial least squares regression (PLSR), least squares support vector machine (LS-SVM) and extreme learning machine (ELM) were used for multivariate analysis. Compared with univariate analysis, ELM model based on the full spectrum (Rp = 0.9896 and RMSEP = 26.0 mg/kg) had more advantages for cadmium detection. Conclusion Compared with traditional methods (150 min), the quantitative detection method based on LIBS technology (less than 5 min) greatly reduces the detection time of heavy metals. The results showed that LIBS has proved to be a reliable method for quantitative detection of cadmium in rice roots. The research can provide theoretical support for timely detection of heavy metals in crop and food production.

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2492 ◽  
Author(s):  
Xiaodan Liu ◽  
Fei Liu ◽  
Weihao Huang ◽  
Jiyu Peng ◽  
Tingting Shen ◽  
...  

Rapid detection of Cd content in soil is beneficial to the prevention of soil heavy metal pollution. In this study, we aimed at exploring the rapid quantitative detection ability of laser- induced breakdown spectroscopy (LIBS) under the conditions of air and Ar for Cd in soil, and finding a fast and accurate method for quantitative detection of heavy metal elements in soil. Spectral intensity of Cd and system performance under air and Ar conditions were analyzed and compared. The univariate model and multivariate models of partial least-squares regression (PLSR) and least-squares support vector machine (LS-SVM) of Cd under the air and Ar conditions were built, and the LS-SVM model under the Ar condition obtained the best performance. In addition, the principle of influence of Ar on LIBS detection was investigated by analyzing the three-dimensional profile of the ablation crater. The overall results indicated that LIBS combined with LS-SVM under the Ar condition could be a useful tool for the accurate quantitative detection of Cd in soil and could provide reference for environmental monitoring.


2019 ◽  
Vol 9 (24) ◽  
pp. 5336 ◽  
Author(s):  
Qi XIA ◽  
Lei-ming YUAN ◽  
Xiaojing CHEN ◽  
Liuwei MENG ◽  
Guangzao HUANG

Methanol gasoline blends are a more economical, and environmentally friendly fuels than gasoline alone, and are widely used in the transportation industry. The content of methanol in methanol gasoline plays an important role in ensuring the quality of gasoline. In some solutions, due to the shortage of energy and illegal profits, the problem of gasoline adulteration and its fineness, has received more and more attention, which would seriously affect the operating condition and service life of internal combustion engines. Therefore, it is very important to identify the correct level of gasoline. However, the traditional detection method is complex and time-consuming. To this end, the feasibility of using attenuated total reflectance Fourier transform infrared (ATR-FTIR) methods coupled with chemometrics methods were investigated to quantitatively and qualitatively analyze methanol gasoline. The qualitative analysis result of partial least squares discriminant analysis (PLS-DA) obtained 100% and 98.66% accuracy in the calibration set and the prediction set, respectively. As for quantitative analysis; two regression algorithms of partial least squares regression (PLSR) and the least square support vector machine (LS-SVM), as well as two variables selection methods of the successive projections algorithm (UVE) competitive adaptive reweighted sampling (CARS) and uninformative variable elimination (UVE) were combined to establish the quantitative model. By comparing the performance of the optimal models; the UVE-PLSR model performed best with a residual predictive deviation (RPD) value of 6.420. The qualitative and quantitative analysis results demonstrate the feasibility of using ATR-FTIR spectra to detect the methanol in methanol gasoline. It is believed that the promising IR spectra will be widely used in gasoline energy quality control in the further.


2013 ◽  
Vol 33 (3) ◽  
pp. 0330002 ◽  
Author(s):  
王春龙 Wang Chunlong ◽  
刘建国 Liu Jianguo ◽  
赵南京 Zhao Nanjing ◽  
马明俊 Ma Mingjun ◽  
王寅 Wang Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document