scholarly journals Three-dimensional hierarchical porous carbon derived from natural resources for highly efficient treatment of polluted water

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Jiaxin Li ◽  
Rudolf Holze ◽  
Simbarashe Moyo ◽  
Song Wang ◽  
Sanxi Li ◽  
...  

Abstract Background Dealing with the ever-increasing water pollution has become an urgent global problem, especially the organic containing polluted water. Physical adsorption has become one of the most popular ways for removal of organic dyes from wastewater due to its low cost as well as high efficiency. However, the adsorption performance is still limited by the low specific surface area (SSA) and unsuitable pore size. Hence, it is still a challenge to synthesize active carbon (AC) with high SSA, suitable pore size distribution as well as low cost for polluted water treatment. Here, we report an efficient method to prepare AC with large SSA from jujube for removal of both cationic dye and anionic dye from aqueous solution. The present results demonstrate that biomass-derived hierarchical porous carbon has a real potential application for wastewater treatment. Results The as-prepared hierarchical porous structure carbon material (PC-500-6) shows a high specific surface area (3203 m2/g) and pore size distribution in the range 0.8 to 3.0 nm, while exhibiting an enhanced adsorption performance for both methylene blue (MB) and methylene orange (MO) from an aqueous solution. The maximum adsorption capacity even reaches 925.93 mg/g and 1281.39 mg/g for MB and MO, which was calculated from Langmuir model. Through analysis of the adsorption data, it was found that the corresponding adsorption kinetic fits the pseudo-second-order model very well. Conclusions It can be concluded that the adsorption of MB has a strong correlation with SSA, pore size distribution as well as the pore volume. The present study paved a practical way for wastewater treatment by using biomass-derived hierarchical porous carbon.

2021 ◽  
Author(s):  
Jiaxin Li ◽  
Rudolf Holze ◽  
Simbarashe Moyo ◽  
Song Wang ◽  
Sanxi Li ◽  
...  

Abstract In this work, a series of three-dimensional (3D) porous carbon nanomaterial with large specific surface area and hierarchical pores were selectively prepared from biomass with varied properties obtained by tuning the carbonization temperature and activation agent. The optimized carbon sample (PC-500-6) exhibits a typical hierarchical porous structure with a high specific surface area (3203 m2/g) and pore size distribution in the range 0.8 to 3.0 nm, which shows excellent adsorption performance for methylene blue (MB) from an aqueous solution. The maximum adsorption capacity even reaches 917.43 mg/g, which is among one of the best results up to now. Through analysis of the adsorption data, it is found that the corresponding adsorption kinetic fits the pseudo-second-order model very well. The present results demonstrate that biomass-derived hierarchical porous carbon has a real potential application for wastewater treatment.Background:Dealing with the ever-increasing water pollution has become an urgent global problem, especially the organic containing polluted water. The physical adsorption has become one of the most popular ways for removal of organic dyes from wastewater due to its low cost as well as high efficiency. However, the adsorption performance is still limited by the low specific surface area (SSA) and unsuitable pore size. Hence, it is still a challenge to synthesize active carbon (AC) with high SSA, suitable pore size distribution as well as low cost for polluted water treatment. Here, we report an efficient method to prepare AC with large SSA from jujube for removal of MB in aqueous solution. The present results demonstrate that biomass-derived hierarchical porous carbon has a real potential application for wastewater treatment.Results:The as-prepared hierarchical porous structure carbon material (PC-500-6) shows a high specific surface area (3203 m2/g) and pore size distribution in the range 0.8 to 3.0 nm, while exhibits an enhanced adsorption performance for methylene blue (MB) from an aqueous solution. The maximum adsorption capacity even reaches 917.43 mg/g, which was calculated from Langmuir model. Through analysis of the adsorption data, it is found that the corresponding adsorption kinetic fits the pseudo-second-order model very well.Conclusions:It can be concluded that the adsorption of MB has a strong correlation with SSA, pore size distribution as well as the pore volume. The present study paved a practical way for wastewater treatment by using biomass-derived hierarchical porous carbon.


Author(s):  
Dian Zhang ◽  
Xu Zhang ◽  
Boya Wang ◽  
Shiman He ◽  
Shiqi Liu ◽  
...  

Aluminium-sulfur (Al-S) batteries possess high research merits and application prospects owing to their high theoretical energy density, high safety and low cost. However, the deficiency of outstanding cathodes severely limits...


2020 ◽  
Vol 8 (8) ◽  
pp. 4376-4385 ◽  
Author(s):  
Youyi Lei ◽  
Xinmiao Liang ◽  
Li Yang ◽  
Ping Jiang ◽  
Zhenyu Lei ◽  
...  

Low-cost hierarchical porous carbon materials with a controllable structure for supercapacitors and lithium selenium batteries.


RSC Advances ◽  
2017 ◽  
Vol 7 (54) ◽  
pp. 33843-33850 ◽  
Author(s):  
Peng Chang ◽  
Zhihong Qin

Herein, a novel kind of hierarchical porous carbons were directly synthesized from low-cost extracts of coal by coupling nano MgO template with in situ KOH activation strategy.


RSC Advances ◽  
2014 ◽  
Vol 4 (93) ◽  
pp. 51072-51079 ◽  
Author(s):  
Li Wang ◽  
Yaolin Zheng ◽  
Qinying Zhang ◽  
Li Zuo ◽  
Shuiliang Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document