scholarly journals New genotypes of Helicobacter Pylori VacA d-region identified from global strains

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Djaleel Muhammad Soyfoo ◽  
Yussriya Hanaa Doomah ◽  
Dong Xu ◽  
Chao Zhang ◽  
Huai-Ming Sang ◽  
...  

Abstract Background Pathogenesis of Helicobacter Pylori (HP) vacuolating toxin A (vacA) depends on polymorphic diversity within the signal (s), middle (m), intermediate (i), deletion (d) and c-regions. These regions show distinct allelic diversity. The s-region, m-region and the c-region (a 15 bp deletion at the 3′-end region of the p55 domain of the vacA gene) exist as 2 types (s1, s2, m1, m2, c1 and c2), while the i–region has 3 allelic types (i1, i2 and i3). The locus of d-region of the vacA gene has also been classified into 2 genotypes, namely d1 and d2. We investigated the “d-region”/“loop region” through bioinformatics, to predict its properties and relation to disease. One thousand two hundred fifty-nine strains from the NCBI nucleotide database and the dryad database with complete vacA sequences were included in the study. The sequences were aligned using BioEdit and analyzed using Lasergene and BLAST. The secondary structure and physicochemical properties of the region were predicted using PredictProtein. Results We identified 31 highly polymorphic genotypes in the “d-region”, with a mean length of 34 amino acids (9 ~ 55 amino acids). We further classified the 31 genotypes into 3 main types, namely K-type (strains starting with the KDKP motif in the “d-region”), Q-type (strains starting with the KNQT motif), and E-type (strains starting with the ESKT motif) respectively. The most common type, K-type, is more prevalent in cancer patients (80.87%) and is associated with the s1i1m1c1 genotypes (P < .01). Incidentally, a new region expressing sequence diversity (2 aa deletion) at the C-terminus of the p55 domain of vacA was identified during bioinformatics analysis. Conclusions Prediction of secondary structures shows that the “d-region” adopts a loop conformation and is a disordered region.

2000 ◽  
Vol 68 (9) ◽  
pp. 4938-4947 ◽  
Author(s):  
Bachra Rokbi ◽  
Geneviève Renauld-Mongenie ◽  
Michèle Mignon ◽  
B. Danve ◽  
David Poncet ◽  
...  

ABSTRACT The distribution of the two isotypes of tbpB in a collection of 108 serogroup B meningococcal strains belonging to the four major clonal groups associated with epidemic and hyperendemic disease (the ET-37 complex, the ET-5 complex, lineage III, and cluster A4) was determined. Isotype I strains (with a 1.8-kbtbpB gene) was less represented than isotype II strains (19.4 versus 80.6%). Isotype I was restricted to the ET-37 complex strains, while isotype II was found in all four clonal complexes. The extent of the allelic diversity of tbpB in these two groups was studied by PCR restriction analysis and sequencing of 10 newtbpB genes. Four major tbpB gene variants were characterized: B16B6 (representative of isotype I) and M982, BZ83, and 8680 (representative of isotype II). The relevance of these variants was assessed at the antigenic level by the determination of cross-bactericidal activity of purified immunoglobulin G preparations raised to the corresponding recombinant TbpB (rTbpB) protein against a panel of 27 strains (5 of isotype I and 22 of isotype II). The results indicated that rTbpB corresponding to each variant was able to induce cross-bactericidal antibodies. However, the number of strains killed with an anti-rTbpB serum was slightly lower than that obtained with an anti-TbpA+B complex. None of the sera tested raised against an isotype I strain was able to kill an isotype II strain and vice versa. None of the specific antisera tested (anti-rTbpB or anti-TbpA+B complex) was able to kill all of the 22 isotype II strains tested. Moreover, using sera raised against the C-terminus domain of TbpB M982 (amino acids 352 to 691) or BZ83 (amino acids 329 to 669) fused to the maltose-binding protein, cross-bactericidal activity was detected against 12 and 7 isotype II strains, respectively, of the 22 tested. These results suggest surface accessibility of the C-terminal end of TbpB. Altogether, these results show that although more than one rTbpB will be required in the composition of a TbpB-based vaccine to achieve a fully cross-bactericidal activity, rTbpB and its C terminus were able by themselves to induce cross-bactericidal antibodies.


2021 ◽  
Vol 22 (6) ◽  
pp. 3219
Author(s):  
Fanghua Wang ◽  
Siyu Liu ◽  
Xuejing Mao ◽  
Ruiguo Cui ◽  
Bo Yang ◽  
...  

Phospholipases D (PLDs) play important roles in different organisms and in vitro phospholipid modifications, which attract strong interests for investigation. However, the lack of PLD structural information has seriously hampered both the understanding of their structure–function relationships and the structure-based bioengineering of this enzyme. Herein, we presented the crystal structure of a PLD from the plant-associated bacteria Serratia plymuthica strain AS9 (SpPLD) at a resolution of 1.79 Å. Two classical HxKxxxxD (HKD) motifs were found in SpPLD and have shown high structural consistence with several PLDs in the same family. While comparing the structure of SpPLD with the previous resolved PLDs from the same family, several unique conformations on the C-terminus of the HKD motif were demonstrated to participate in the arrangement of the catalytic pocket of SpPLD. In SpPLD, an extented loop conformation between β9 and α9 (aa228–246) was found. Moreover, electrostatic surface potential showed that this loop region in SpPLD was positively charged while the corresponding loops in the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9) were neutral. The shortened loop between α10 and α11 (aa272–275) made the SpPLD unable to form the gate-like structure which existed specically in the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9) and functioned to stabilize the substrates. In contrast, the shortened loop conformation at this corresponding segment was more alike to several nucleases (Nuc, Zuc, mZuc, NucT) within the same family. Moreover, the loop composition between β11 and β12 was also different from the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9), which formed the entrance of the catalytic pocket and were closely related to substrate recognition. So far, SpPLD was the only structurally characterized PLD enzyme from Serratia. The structural information derived here not only helps for the understanding of the biological function of this enzyme in plant protection, but also helps for the understanding of the rational design of the mutant, with potential application in phospholipid modification.


1993 ◽  
Vol 69 (05) ◽  
pp. 485-489 ◽  
Author(s):  
Isabelle Djaffar ◽  
Didier Vilette ◽  
Dominique Pidard ◽  
Jean-Luc Wautier ◽  
Jean-Philippe Rosa

SummaryThe human platelet antigen (HPA) 3 system is expressed on GPIIb, one subunit of GPIIb-IIIa, the platelet fibrinogen receptor. It was recently shown that HPA-3 was associated with an Ile843/Ser polymorphism. To investigate further HPA-3 determinant structure, we localized an HPA-3a determinant, recognized by the alloantiserum Leka, within the last 29 amino acids of GPIIbα. This region encompasses the polymorphic Ile843, which, as expected, is substituted into Ser in Leka-negative individuals, as shown by DNA sequence after polymerase chain reaction on platelet RNA. In addition, contribution of glycosylation to the determinant structure was demonstrated since the Leka antigenicity was strongly decreased after specifically removing nonterminal O-linked sugars, but not terminal sialic acids. We have thus refined the localization of an HPA-3a determinant within the last 29 amino acids, including Ile843, of GPIIb heavy chain, and shown that the Leka HPA-3a determinant is dependent, in part, upon the serine-linked carbohydrates adjacent to Ile/Ser843.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 467
Author(s):  
Aina Ichihara ◽  
Hinako Ojima ◽  
Kazuyoshi Gotoh ◽  
Osamu Matsushita ◽  
Susumu Take ◽  
...  

The infection caused by Helicobacter pylori is associated with several diseases, including gastric cancer. Several methods for the diagnosis of H. pylori infection exist, including endoscopy, the urea breath test, and the fecal antigen test, which is the serum antibody titer test that is often used since it is a simple and highly sensitive test. In this context, this study aims to find the association between different antibody reactivities and the organization of bacterial genomes. Next-generation sequences were performed to determine the genome sequences of four strains of antigens with different reactivity. The search was performed on the common genes, with the homology analysis conducted using a genome ring and dot plot analysis. The two antigens of the highly reactive strains showed a high gene homology, and Western blots for CagA and VacA also showed high expression levels of proteins. In the poorly responsive antigen strains, it was found that the inversion occurred around the vacA gene in the genome. The structure of bacterial genomes might contribute to the poor reactivity exhibited by the antibodies of patients. In the future, an accurate serodiagnosis could be performed by using a strain with few gene mutations of the antigen used for the antibody titer test of H. pylori.


2021 ◽  
Vol 64 (6) ◽  
pp. 3048-3058
Author(s):  
Tobias F. Fischer ◽  
Clara T. Schoeder ◽  
Tristan Zellmann ◽  
Jan Stichel ◽  
Jens Meiler ◽  
...  
Keyword(s):  

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 926
Author(s):  
Maria C. Martins ◽  
Susana F. Fernandes ◽  
Bruno A. Salgueiro ◽  
Jéssica C. Soares ◽  
Célia V. Romão ◽  
...  

Flavodiiron proteins (FDPs) are a family of modular and soluble enzymes endowed with nitric oxide and/or oxygen reductase activities, producing N2O or H2O, respectively. The FDP from Escherichia coli, which, apart from the two core domains, possesses a rubredoxin-like domain at the C-terminus (therefore named flavorubredoxin (FlRd)), is a bona fide NO reductase, exhibiting O2 reducing activity that is approximately ten times lower than that for NO. Among the flavorubredoxins, there is a strictly conserved amino acids motif, -G[S,T]SYN-, close to the catalytic diiron center. To assess its role in FlRd’s activity, we designed several site-directed mutants, replacing the conserved residues with hydrophobic or anionic ones. The mutants, which maintained the general characteristics of the wild type enzyme, including cofactor content and integrity of the diiron center, revealed a decrease of their oxygen reductase activity, while the NO reductase activity—specifically, its physiological function—was almost completely abolished in some of the mutants. Molecular modeling of the mutant proteins pointed to subtle changes in the predicted structures that resulted in the reduction of the hydration of the regions around the conserved residues, as well as in the elimination of hydrogen bonds, which may affect proton transfer and/or product release.


Genetics ◽  
1998 ◽  
Vol 150 (3) ◽  
pp. 977-986 ◽  
Author(s):  
Yangsuk Park ◽  
John Hanish ◽  
Arthur J Lustig

Abstract Previous studies from our laboratory have demonstrated that tethering of Sir3p at the subtelomeric/telomeric junction restores silencing in strains containing Rap1-17p, a mutant protein unable to recruit Sir3p. This tethered silencing assay serves as a model system for the early events that follow recruitment of silencing factors, a process we term initiation. A series of LexA fusion proteins in-frame with various Sir3p fragments were constructed and tested for their ability to support tethered silencing. Interestingly, a region comprising only the C-terminal 144 amino acids, termed the C-terminal domain (CTD), is both necessary and sufficient for restoration of silencing. Curiously, the LexA-Sir3N205 mutant protein overcomes the requirement for the CTD, possibly by unmasking a cryptic initiation site. A second domain spanning amino acids 481-835, termed the nonessential for initiation domain (NID), is dispensable for the Sir3p function in initiation, but is required for the recruitment of the Sir4p C terminus. In addition, in the absence of the N-terminal 481 amino acids, the NID negatively influences CTD activity. This suggests the presence of a third region, consisting of the N-terminal half (1-481) of Sir3p, termed the positive regulatory domain (PRD), which is required to initiate silencing in the presence of the NID. These data suggest that the CTD “active” site is under both positive and negative control mediated by multiple Sir3p domains.


Sign in / Sign up

Export Citation Format

Share Document