scholarly journals Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes

BMC Genomics ◽  
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Hai-Ming Xu ◽  
Xiang-Dong Kong ◽  
Fei Chen ◽  
Ji-Xiang Huang ◽  
Xiang-Yang Lou ◽  
...  
2019 ◽  
Vol 37 (4) ◽  
pp. 347-364
Author(s):  
Rong Yuan ◽  
Xinhua Zeng ◽  
Shengbo Zhao ◽  
Gang Wu ◽  
Xiaohong Yan

2019 ◽  
Vol 43 (3) ◽  
pp. 712-731 ◽  
Author(s):  
Quan Li ◽  
Guangda Ding ◽  
Ningmei Yang ◽  
Philip John White ◽  
Xiangsheng Ye ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1423
Author(s):  
André Albuquerque ◽  
Cristina Óvilo ◽  
Yolanda Núñez ◽  
Rita Benítez ◽  
Adrián López-Garcia ◽  
...  

Gene expression is one of the main factors to influence meat quality by modulating fatty acid metabolism, composition, and deposition rates in muscle tissue. This study aimed to explore the transcriptomics of the Longissimus lumborum muscle in two local pig breeds with distinct genetic background using next-generation sequencing technology and Real-Time qPCR. RNA-seq yielded 49 differentially expressed genes between breeds, 34 overexpressed in the Alentejano (AL) and 15 in the Bísaro (BI) breed. Specific slow type myosin heavy chain components were associated with AL (MYH7) and BI (MYH3) pigs, while an overexpression of MAP3K14 in AL may be associated with their lower loin proportion, induced insulin resistance, and increased inflammatory response via NFkB activation. Overexpression of RUFY1 in AL pigs may explain the higher intramuscular (IMF) content via higher GLUT4 recruitment and consequently higher glucose uptake that can be stored as fat. Several candidate genes for lipid metabolism, excluded in the RNA-seq analysis due to low counts, such as ACLY, ADIPOQ, ELOVL6, LEP and ME1 were identified by qPCR as main gene factors defining the processes that influence meat composition and quality. These results agree with the fatter profile of the AL pig breed and adiponectin resistance can be postulated as responsible for the overexpression of MAP3K14′s coding product NIK, failing to restore insulin sensitivity.


Sign in / Sign up

Export Citation Format

Share Document