scholarly journals Transcriptomic Profiling of Skeletal Muscle Reveals Candidate Genes Influencing Muscle Growth and Associated Lipid Composition in Portuguese Local Pig Breeds

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1423
Author(s):  
André Albuquerque ◽  
Cristina Óvilo ◽  
Yolanda Núñez ◽  
Rita Benítez ◽  
Adrián López-Garcia ◽  
...  

Gene expression is one of the main factors to influence meat quality by modulating fatty acid metabolism, composition, and deposition rates in muscle tissue. This study aimed to explore the transcriptomics of the Longissimus lumborum muscle in two local pig breeds with distinct genetic background using next-generation sequencing technology and Real-Time qPCR. RNA-seq yielded 49 differentially expressed genes between breeds, 34 overexpressed in the Alentejano (AL) and 15 in the Bísaro (BI) breed. Specific slow type myosin heavy chain components were associated with AL (MYH7) and BI (MYH3) pigs, while an overexpression of MAP3K14 in AL may be associated with their lower loin proportion, induced insulin resistance, and increased inflammatory response via NFkB activation. Overexpression of RUFY1 in AL pigs may explain the higher intramuscular (IMF) content via higher GLUT4 recruitment and consequently higher glucose uptake that can be stored as fat. Several candidate genes for lipid metabolism, excluded in the RNA-seq analysis due to low counts, such as ACLY, ADIPOQ, ELOVL6, LEP and ME1 were identified by qPCR as main gene factors defining the processes that influence meat composition and quality. These results agree with the fatter profile of the AL pig breed and adiponectin resistance can be postulated as responsible for the overexpression of MAP3K14′s coding product NIK, failing to restore insulin sensitivity.

Reproduction ◽  
2013 ◽  
Vol 145 (6) ◽  
pp. 587-596 ◽  
Author(s):  
Xiangyang Miao ◽  
Qingmiao Luo

The Small-tail Han sheep and the Surabaya fur sheep are two local breeds in North China, which are characterized by high-fecundity and low-prolificacy breed respectively. Significant genetic differences between these two breeds have provided increasing interests in the identification and utilization of major prolificacy genes in these sheep. High prolificacy is a complex trait, and it is difficult to comprehensively identify the candidate genes related to this trait using the single molecular biology technique. To understand the molecular mechanisms of fecundity and provide more information about high prolificacy candidate genes in high- and low-fecundity sheep, we explored the utility of next-generation sequencing technology in this work. A total of 1.8 Gb sequencing reads were obtained and resulted in more than 20 000 contigs that averaged ∼300 bp in length. Ten differentially expressed genes were further verified by quantitative real-time RT-PCR to confirm the reliability of RNA-seq results. Our work will provide a basis for the future research of the sheep reproduction.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 7
Author(s):  
Md Shahjaman ◽  
Habiba Akter ◽  
Md. Mamunur Rashid ◽  
Md. Ibnul Asifuzzaman ◽  
Md. Bipul Hossen ◽  
...  

Background: One of the main goals of RNA-seq data analysis is identification of biomarkers that are differentially expressed (DE) across two or more experimental conditions. RNA-seq uses next generation sequencing technology and it has many advantages over microarrays. Numerous statistical methods have already been developed for identification the biomarkers from RNA-seq data. Most of these methods were based on either Poisson distribution or negative binomial distribution. However, efficient biomarker identification from discrete RNA-seq data is hampered by existing methods when the datasets contain outliers or extreme observations. Specially, the performance of these methods becomes more severe when the data come from a small number of samples in the presence of outliers. Therefore, in this study, an attempt is made to propose an outlier detection and modification approach for RNA-seq data to overcome the aforesaid problems of traditional methods. We make our proposed method facilitate in RNA-seq data by transforming the read count data into continuous data. Methods: We use median control chart to detect and modify the outlying observation in a log-transformed RNA-seq dataset. To investigate the performance of the proposed method in absence and presence of outliers, we employ the five popular biomarker selection methods (edgeR, edgeR_robust, DEseq, DEseq2 and limma) both in simulated and real datasets. Results: The simulation results strongly suggest that the performance of the proposed method improved in the presence of outliers. The proposed method also detected an additional 18 outlying DE genes from a real mouse RNA-seq dataset that were not detected by traditional methods. Using the KEGG pathway and gene ontology analysis results we reveal that these genes may be biomarkers, which require validation in a wet lab. Conclusions: Our proposal is to apply the proposed method for biomarker identification from other RNA-seq data.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1228
Author(s):  
Zhigang Hu ◽  
Junting Cao ◽  
Guangyu Liu ◽  
Huilin Zhang ◽  
Xiaolin Liu

In China, the production for duck meat is second only to that of chicken, and the demand for duck meat is also increasing. However, there is still unclear on the internal mechanism of regulating skeletal muscle growth and development in duck. This study aimed to identity candidate genes related to growth of duck skeletal muscle and explore the potential regulatory mechanism. RNA-seq technology was used to compare the transcriptome of skeletal muscles in black Muscovy ducks at different developmental stages (day 17, 21, 27, 31, and 34 of embryos and postnatal 6-month-olds). The SNPs and InDels of black Muscovy ducks at different growth stages were mainly in “INTRON”, “SYNONYMOUS_CODING”, “UTR_3_PRIME”, and “DOWNSTREAM”. The average number of AS in each sample was 37,267, mainly concentrated in TSS and TTS. Besides, a total of 19 to 5377 DEGs were detected in each pairwise comparison. Functional analysis showed that the DEGs were mainly involved in the processes of cell growth, muscle development, and cellular activities (junction, migration, assembly, differentiation, and proliferation). Many of DEGs were well known to be related to growth of skeletal muscle in black Muscovy duck, such as MyoG, FBXO1, MEF2A, and FoxN2. KEGG pathway analysis identified that the DEGs were significantly enriched in the pathways related to the focal adhesion, MAPK signaling pathway and regulation of the actin cytoskeleton. Some DEGs assigned to these pathways were potential candidate genes inducing the difference in muscle growth among the developmental stages, such as FAF1, RGS8, GRB10, SMYD3, and TNNI2. Our study identified several genes and pathways that may participate in the regulation of skeletal muscle growth in black Muscovy duck. These results should serve as an important resource revealing the molecular basis of muscle growth and development in duck.


2020 ◽  
Author(s):  
Peisen Sun ◽  
Haoming Wang ◽  
Guanglin Li

AbstractCircular RNA (circRNA), which has a closed-loop structure, is a kind of special endogenous RNA and plays important roles in many biological processes. With the improvement of next-generation sequencing technology and bioinformatics methods, some tools have been published for circRNA detection based on RNA-seq. However, only a few tools focus on downstream analyses, and they have poor visualization ability. Here, we developed the R package ‘Rcirc’ for further analyses of circRNA after its detection. Rcirc identifies the coding ability of circRNA and visualize various aspects of this feature. It also provides general visualization for both single circRNAs and meta-features of thousands of circRNAs. Rcirc was designed as a user-friendly tool that covers many highly automatic functions without running many complicated processes by users. It is available on GitHub (https://github.com/PSSUN/Rcirc) under the license GPL 3.0.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3074-3074
Author(s):  
Ilaria Iacobucci ◽  
Alberto Ferrarini ◽  
Marco Sazzini ◽  
Enrico Giacomelli ◽  
Annalisa Lonetti ◽  
...  

Abstract Abstract 3074 Poster Board III-11 Background BCR-ABL1-positve Acute Lymphoblastic Leukemia (ALL) is the most common ALL subtype in adults and is associated with poor prognosis. The pathogenesis of this leukemia is related to the expression of the BCR-ABL1 fusion transcript, but additional recurrent genetic lesions are suspected to be involved in its development and progression. Aim A Next-Generation Sequencing Technology was used to sequence the whole transcriptome of leukemia cells from a BCR-ABL1-positive ALL patient at diagnosis and at relapse following tyrosine kinase inhibitor (TKI) therapy with the aim to detect acquired mutations cooperating with BCR-ABL1 in leukemia manifestation and drug-resistance. Methods Poly(A) RNA was extracted from leukemia cells and used to prepare double-stranded cDNA libraries for Illumina/Solexa Genome Analyzer. Obtained 36 base-pair (bp) sequence reads were mapped to the reference sequence of the human genome (UCSC hg18, NCBI build 36.1) to identify single nucleotide variants (SNVs) and to estimate reads density corresponding to RNA from each known exon, canonical splice event or new candidate gene. This approach allowed us to define a detailed Digital Gene Expression (DGE) profile. Reads that showed no match to the reference genome were subsequently mapped to a dataset of all possible splice junctions created by in silico pairwise combination of the exons of all annotated genes (UCSC knownGene file) to identify alternative splicing (AS) events. Results Whole Transcriptome Shotgun Sequencing (RNA-seq) analysis generated 13.9 and 15.8 million reads from de novo and relapsed ALL samples respectively, achieving approximately 90% diploid coverage and detecting transcripts from 62% and 64% of human annotated genes. The great majority of these active genes (78% at diagnosis and 73% at relapse) showed very low expression levels, with a number of reads per kilobase of exon model per million mapped reads (RPKM value) from 0.01 to 10, whereas 20% and 24% showed moderate expression levels (RPKM 10-100), as well as only 2% and 3% resulted highly expressed (RPKM 100-8000). Moreover, 6,390 and 4,671 AS events were also identified within 4,334 diagnosis and 3,651 relapse annotated transcripts, with the already described ALL-related Ik6 Ikaros isoform observed in both samples. Finally, 2,011 and 2,103 single nucleotide variants (SNVs) were found at diagnosis and relapse respectively, about 94% of which have been already reported in the dbSNP. Of greater interest as potential ALL-related mutations, 124 and 115 non annotated SNVs were also found at diagnosis and relapse, respectively. Of these, 43 affected both samples, while 81 and 72 resulted diagnosis and relapse private variants. In particular, the analysis was focused to the coding sequences of annotated genes, finding that non-synonymous changes were one out of the 19 shared between the two samples and affected a transmembrane receptor gene (PLXNB2). Six out of the 12 diagnosis private variants, affecting genes involved in metabolic process (PDE4DIP, EIF2S3, DPEP1, ZC3H12D, TMEM46) or transport (MVP) and 5 out of the 30 relapse private variants, affecting genes involved in cell cycle regulation (ABL1, CDC2L1), catalytic activity (CTSZ, CXorf21) or with unknown function (FAM116B). Most of these diagnosis and relapse non-synonymous private mutations resulted highly expressed, showing frequencies of mutated unique reads higher than 50%. According to this pattern, diagnosis private mutations may be carried by primary leukemic clones that did not develop again at relapse, whereas relapse private mutations have greater probability to be variants acquired during the disease progression. Interestingly, the T315I point mutation in the Abl kinase domain, that confers resistance to many TKIs, was found at relapse but not at diagnosis. Conclusions An accurate expression profile was obtained for the leukemia cells of the examined ALL patient, as well as the discovery of several new non-synonymous mutations affecting genes from different pathways and for which no correlation was previously found with ALL pathogenesis. These findings demonstrate that RNA-Seq represents a suitable and cost-efficient approach for identifying new genes potentially involved in ALL development and progression. Acknowledgments AIL, AIRC, Fondazione Del Monte di Bologna e Ravenna, FIRB 2006, Ateneo 60% grants, European LeukemiaNet. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 26 (42) ◽  
pp. 7672-7693 ◽  
Author(s):  
Bifang He ◽  
Anthony Mackitz Dzisoo ◽  
Ratmir Derda ◽  
Jian Huang

Background: Phage display is a powerful and versatile technology for the identification of peptide ligands binding to multiple targets, which has been successfully employed in various fields, such as diagnostics and therapeutics, drug-delivery and material science. The integration of next generation sequencing technology with phage display makes this methodology more productive. With the widespread use of this technique and the fast accumulation of phage display data, databases for these data and computational methods have become an indispensable part in this community. This review aims to summarize and discuss recent progress in the development and application of computational methods in the field of phage display. Methods: We undertook a comprehensive search of bioinformatics resources and computational methods for phage display data via Google Scholar and PubMed. The methods and tools were further divided into different categories according to their uses. Results: We described seven special or relevant databases for phage display data, which provided an evidence-based source for phage display researchers to clean their biopanning results. These databases can identify and report possible target-unrelated peptides (TUPs), thereby excluding false-positive data from peptides obtained from phage display screening experiments. More than 20 computational methods for analyzing biopanning data were also reviewed. These methods were classified into computational methods for reporting TUPs, for predicting epitopes and for analyzing next generation phage display data. Conclusion: The current bioinformatics archives, methods and tools reviewed here have benefitted the biopanning community. To develop better or new computational tools, some promising directions are also discussed.


Sign in / Sign up

Export Citation Format

Share Document