scholarly journals Protein functional module identification method combining topological features and gene expression data

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zihao Zhao ◽  
Wenjun Xu ◽  
Aiwen Chen ◽  
Yueyue Han ◽  
Shengrong Xia ◽  
...  

Abstract Background The study of protein complexes and protein functional modules has become an important method to further understand the mechanism and organization of life activities. The clustering algorithms used to analyze the information contained in protein-protein interaction network are effective ways to explore the characteristics of protein functional modules. Results This paper conducts an intensive study on the problems of low recognition efficiency and noise in the overlapping structure of protein functional modules, based on topological characteristics of PPI network. Developing a protein function module recognition method ECTG based on Topological Features and Gene expression data for Protein Complex Identification. Conclusions The algorithm can effectively remove the noise data reflected by calculating the topological structure characteristic values in the PPI network through the similarity of gene expression patterns, and also properly use the information hidden in the gene expression data. The experimental results show that the ECTG algorithm can detect protein functional modules better.

2018 ◽  
Vol 7 (2.21) ◽  
pp. 201 ◽  
Author(s):  
K Yuvaraj ◽  
D Manjula

Current advancements in microarray technology permit simultaneous observing of the expression levels of huge number of genes over various time points. Microarrays have obtained amazing implication in the field of bioinformatics. It includes an ordered set of huge different Deoxyribonucleic Acid (DNA) sequences that can be used to measure both DNA as well as Ribonucleic Acid (RNA) dissimilarities. The Gene Expression (GE) summary aids in understanding the basic cause of gene activities, the growth of genes, determining recent disorders like cancer and as well analysing their molecular pharmacology. Clustering is a significant tool applied for analyzing such microarray gene expression data.  It has developed into a greatest part of gene expression analysis. Grouping the genes having identical expression patterns is known as gene clustering. A number of clustering algorithms have been applied for the analysis of microarray gene expression data. The aim of this paper is to analyze the precision level of the microarray data by using various clustering algorithms. 


2015 ◽  
Vol 2 (1) ◽  
pp. 58-69 ◽  
Author(s):  
P. K. Nizar Banu ◽  
S. Andrews

Mining gene expression data is growing rapidly to predict gene expression patterns and assist clinicians in early diagnosis of tumor formation. Clustering gene expression data is the most important phase, helps in finding group of genes that are highly expressed and suppressed. This paper analyses the performance of most representative hard and soft off-line clustering algorithms: K-Means, Fuzzy C-Means, Self Organizing Maps (SOM) based clustering and Genetic Algorithm (GA) based clustering for brain tumor gene expression dataset. Clusters produced by the clustering algorithms are the indications of the cellular processes. Clustering results are evaluated using clustering indices such as Xie-Beni index (XB), Davies-Bouldin index (DB), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Dunn's Index (DI) along with the time taken to find the compactness and separation of clusters. Experimental results prove soft clustering approaches works well to predict clusters of highly expressed and suppressed genes.


Author(s):  
Crescenzio Gallo

The possible applications of modeling and simulation in the field of bioinformatics are very extensive, ranging from understanding basic metabolic paths to exploring genetic variability. Experimental results carried out with DNA microarrays allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. In this chapter, the authors examine various methods for analyzing gene expression data, addressing the important topics of (1) selecting the most differentially expressed genes, (2) grouping them by means of their relationships, and (3) classifying samples based on gene expressions.


2009 ◽  
Vol 07 (04) ◽  
pp. 645-661 ◽  
Author(s):  
XIN CHEN

There is an increasing interest in clustering time course gene expression data to investigate a wide range of biological processes. However, developing a clustering algorithm ideal for time course gene express data is still challenging. As timing is an important factor in defining true clusters, a clustering algorithm shall explore expression correlations between time points in order to achieve a high clustering accuracy. Moreover, inter-cluster gene relationships are often desired in order to facilitate the computational inference of biological pathways and regulatory networks. In this paper, a new clustering algorithm called CurveSOM is developed to offer both features above. It first presents each gene by a cubic smoothing spline fitted to the time course expression profile, and then groups genes into clusters by applying a self-organizing map-based clustering on the resulting splines. CurveSOM has been tested on three well-studied yeast cell cycle datasets, and compared with four popular programs including Cluster 3.0, GENECLUSTER, MCLUST, and SSClust. The results show that CurveSOM is a very promising tool for the exploratory analysis of time course expression data, as it is not only able to group genes into clusters with high accuracy but also able to find true time-shifted correlations of expression patterns across clusters.


2019 ◽  
Author(s):  
Kyungmin Ahn ◽  
Hironobu Fujiwara

AbstractBackgroundIn single-cell RNA-sequencing (scRNA-seq) data analysis, a number of statistical tools in multivariate data analysis (MDA) have been developed to help analyze the gene expression data. This MDA approach is typically focused on examining discrete genomic units of genes that ignores the dependency between the data components. In this paper, we propose a functional data analysis (FDA) approach on scRNA-seq data whereby we consider each cell as a single function. To avoid a large number of dropouts (zero or zero-closed values) and reduce the high dimensionality of the data, we first perform a principal component analysis (PCA) and assign PCs to be the amplitude of the function. Then we use the index of PCs directly from PCA for the phase components. This approach allows us to apply FDA clustering methods to scRNA-seq data analysis.ResultsTo demonstrate the robustness of our method, we apply several existing FDA clustering algorithms to the gene expression data to improve the accuracy of the classification of the cell types against the conventional clustering methods in MDA. As a result, the FDA clustering algorithms achieve superior accuracy on simulated data as well as real data such as human and mouse scRNA-seq data.ConclusionsThis new statistical technique enhances the classification performance and ultimately improves the understanding of stochastic biological processes. This new framework provides an essentially different scRNA-seq data analytical approach, which can complement conventional MDA methods. It can be truly effective when current MDA methods cannot detect or uncover the hidden functional nature of the gene expression dynamics.


2021 ◽  
Author(s):  
Hakimeh Khojasteh ◽  
Mohammad Hossein Olyaee ◽  
Alireza Khanteymoori

The development of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many machine learning methods have been developed, including supervised, unsupervised, and semi-supervised to infer gene regulatory networks. Most of these methods ignore the class imbalance problem which can lead to decreasing the accuracy of predicting regulatory interactions in the network. Therefore, developing an effective method considering imbalanced data is a challenging task. In this paper, we propose EnGRNT approach to infer GRNs with high accuracy that uses ensemble-based methods. The proposed approach, as well as the gene expression data, considers the topological features of GRN. We applied our approach to the simulated Escherichia coli dataset. Experimental results demonstrate that the appropriateness of the inference method relies on the size and type of expression profiles in microarray data. Except for multifactorial experimental conditions, the proposed approach outperforms unsupervised methods. The obtained results recommend the application of EnGRNT on the imbalanced datasets.


Sign in / Sign up

Export Citation Format

Share Document