scholarly journals Genome sequence of Apostasia ramifera provides insights into the adaptive evolution in orchids

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Weixiong Zhang ◽  
Guoqiang Zhang ◽  
Peng Zeng ◽  
Yongqiang Zhang ◽  
Hao Hu ◽  
...  

Abstract Background The Orchidaceae family is one of the most diverse among flowering plants and serves as an important research model for plant evolution, especially “evo-devo” study on floral organs. Recently, sequencing of several orchid genomes has greatly improved our understanding of the genetic basis of orchid biology. To date, however, most sequenced genomes are from the Epidendroideae subfamily. To better elucidate orchid evolution, greater attention should be paid to other orchid lineages, especially basal lineages such as Apostasioideae. Results Here, we present a genome sequence of Apostasia ramifera, a terrestrial orchid species from the Apostasioideae subfamily. The genomes of A. ramifera and other orchids were compared to explore the genetic basis underlying orchid species richness. Genome-based population dynamics revealed a continuous decrease in population size over the last 100 000 years in all studied orchids, although the epiphytic orchids generally showed larger effective population size than the terrestrial orchids over most of that period. We also found more genes of the terpene synthase gene family, resistant gene family, and LOX1/LOX5 homologs in the epiphytic orchids. Conclusions This study provides new insights into the adaptive evolution of orchids. The A. ramifera genome sequence reported here should be a helpful resource for future research on orchid biology.

2020 ◽  
Author(s):  
Shubham K. Jaiswal ◽  
Abhisek Chakraborty ◽  
Shruti Mahajan ◽  
Sudhir Kumar ◽  
Vineet K. Sharma

ABSTRACTAloe vera is a species from Asphodelaceae plant family having unique characteristics such as drought resistance and also possesses numerous medicinal properties. However, the genetic basis of these phenotypes is yet unknown, primarily due to the unavailability of its genome sequence. In this study, we report the first Aloe vera draft genome sequence comprising of 13.83 Gbp and harboring 86,177 coding genes. It is also the first genome from the Asphodelaceae plant family and is the largest angiosperm genome sequenced and assembled till date. Further, we report the first genome-wide phylogeny of monocots with Aloe vera using 1,440 one-to-one orthologs that resolves the genome-wide phylogenetic position of Aloe vera with respect to the other monocots. The comprehensive comparative analysis of Aloe vera genome with the other available high-quality monocot genomes revealed adaptive evolution in several genes of the drought stress response, CAM pathway, and circadian rhythm in Aloe vera. Further, genes involved in DNA damage response, a key pathway in several biotic and abiotic stress response mechanisms, were found to be positively selected. This provides the genetic basis of the evolution of drought stress tolerance capabilities of Aloe vera. This also substantiates the previously suggested notion that the evolution of unique characters in this species is perhaps due to selection and adaptive evolution rather than the phylogenetic divergence or isolation.


Author(s):  
Mini Chacko ◽  
Anju M.V

The present study was aimed at ranking twelve domesticated orchid species based on ANOVA of their Perimeter : Protoxylem arch ratios. Two terrestrial orchids, Spathoglottis plicata Blume , Peristeria elata Hook and ten epiphytic orchids, Oncidium flexuosum Sims., Dendrobium crumenatum Sw., Dendrobium var. sonia, Arachnis flosaeris (L.) Rchb. f, Vanda sp., Phalaenopsis equestris (Schauer) Rchb. f., Doritis pulcherrima var. marmorata, Acampe sp., Vanilla sp. and Epidendrum sp. were selected for the present study. The P: Px ratio was observed to correlate with the water adaptive efficiency of the orchids.


Author(s):  
Anna E Hiller ◽  
Robb T Brumfield ◽  
Brant C Faircloth

Abstract Black-throated Flowerpiercers (Diglossa brunneiventris) are one species representing a phenotypically specialized group of tanagers (Thraupidae) that have hooked bills which allow them to feed by stealing nectar from the base of flowers. Members of the genus are widely distributed in montane regions from Mexico to northern Argentina, and previous studies of Diglossa have focused on their systematics, phylogenetics, and interesting natural history. Despite numerous studies of species within the genus, no genome assembly exists to represent these nectivorous tanagers. We described the assembly of a genome sequence representing a museum-vouchered, wild, female Diglossa brunneiventris collected in Peru. By combining Pacific Biosciences Sequel long-read technology with 10X linked-read and reference-based scaffolding, we produced a 1.08 Gbp pseudochromosomal assembly including 600 scaffolds with a scaffold N50 of 67.3 Mbp, a scaffold L50 of 6, and a BUSCO completeness score of 95%. This new assembly improves representation of the diverse species that comprise the tanagers, improves on scaffold lengths and contiguity when compared to existing genomic resources for tanagers, and provides another avenue of research into the genetic basis of adaptations common to a nectivorous lifestyle among vertebrates.


2018 ◽  
Vol 10 (2) ◽  
pp. 284-290
Author(s):  
Tria Farokhah ◽  
Sri Utami ◽  
Jumari Jumari

Orchid is a plant with a high aesthetic value.The existence of orchids directly by the community from their natural habitat, causing the existence of orchid in nature was threatened. The potential of orchid diversity in the Gebugan Nature Reserve area needs exploration to maintain its sustainability. This research would explore the diversity and abundance of orchid species and determined the environmental conditionof Gebugan Nature Reserve. The study was done on 2 stations with altitude difference are 900 m asl and 1045 m asl. Five plots of 10 m x 10 m were systematically constructed at each station with a distance of plots 50 meters. Species of orchids found in the Gebugan Nature Reserve were 12 species, including 11 species of epiphytic orchids and 1 species of terrestrial orchids. The abundance of individual orchid species was relatively higher in places with higher altitudes. Micropera sp was the most abundant orchid species and Corymborkis veratrifolia was the species of orchid with the lowest abundance. It is found that the environmental conditions of Gebugan Nature Reserve are suitable for orchid. The novelty of the research is providing a new data base of orchid in the Gebugan Nature Reserve. The result of the study would be beneficial for developing strategy of genetic conservation of orchird germplasm.


2010 ◽  
Vol 36 (4) ◽  
pp. 688-694
Author(s):  
Yi-Jun WANG ◽  
Yan-Ping LÜ ◽  
Qin XIE ◽  
De-Xiang DENG ◽  
Yun-Long BIAN

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cuili Pan ◽  
Zhaoxiong Lei ◽  
Shuzhe Wang ◽  
Xingping Wang ◽  
Dawei Wei ◽  
...  

Abstract Background Cyclin-dependent kinases (CDKs) are protein kinases regulating important cellular processes such as cell cycle and transcription. Many CDK genes also play a critical role during adipogenic differentiation, but the role of CDK gene family in regulating bovine adipocyte differentiation has not been studied. Therefore, the present study aims to characterize the CDK gene family in bovine and study their expression pattern during adipocyte differentiation. Results We performed a genome-wide analysis and identified a number of CDK genes in several bovine species. The CDK genes were classified into 8 subfamilies through phylogenetic analysis. We found that 25 bovine CDK genes were distributed in 16 different chromosomes. Collinearity analysis revealed that the CDK gene family in Bos taurus is homologous with Bos indicus, Hybrid-Bos taurus, Hybrid Bos indicus, Bos grunniens and Bubalus bubalis. Several CDK genes had higher expression levels in preadipocytes than in differentiated adipocytes, as shown by RNA-seq analysis and qPCR, suggesting a role in the growth of emerging lipid droplets. Conclusion In this research, 185 CDK genes were identified and grouped into eight distinct clades in Bovidae, showing extensively homology. Global expression analysis of different bovine tissues and specific expression analysis during adipocytes differentiation revealed CDK4, CDK7, CDK8, CDK9 and CDK14 may be involved in bovine adipocyte differentiation. The results provide a basis for further study to determine the roles of CDK gene family in regulating adipocyte differentiation, which is beneficial for beef quality improvement.


Planta ◽  
2021 ◽  
Vol 253 (4) ◽  
Author(s):  
Mingzhao Zhu ◽  
Shujin Lu ◽  
Mu Zhuang ◽  
Yangyong Zhang ◽  
Honghao Lv ◽  
...  

Abstract Main conclusion Chitinase family genes were involved in the response of Brassica oleracea to Fusarium wilt, powdery mildew, black spot and downy mildew. Abstract Abstract Chitinase, a category of pathogenesis-related proteins, is believed to play an important role in defending against external stress in plants. However, a comprehensive analysis of the chitin-binding gene family has not been reported to date in cabbage (Brassica oleracea L.), especially regarding the roles that chitinases play in response to various diseases. In this study, a total of 20 chitinase genes were identified using a genome-wide search method. Phylogenetic analysis was employed to classify these genes into two groups. The genes were distributed unevenly across six chromosomes in cabbage, and all of them contained few introns (≤ 2). The results of collinear analysis showed that the cabbage genome contained 1–5 copies of each chitinase gene (excluding Bol035470) identified in Arabidopsis. The heatmap of the chitinase gene family showed that these genes were expressed in various tissues and organs. Two genes (Bol023322 and Bol041024) were relatively highly expressed in all of the investigated tissues under normal conditions, exhibiting the expression characteristics of housekeeping genes. In addition, under four different stresses, namely, Fusarium wilt, powdery mildew, black spot and downy mildew, we detected 9, 5, 8 and 8 genes with different expression levels in different treatments, respectively. Our results may help to elucidate the roles played by chitinases in the responses of host plants to various diseases.


2020 ◽  
Vol 48 (22) ◽  
pp. 12604-12617
Author(s):  
Pengpeng Long ◽  
Lu Zhang ◽  
Bin Huang ◽  
Quan Chen ◽  
Haiyan Liu

Abstract We report an approach to predict DNA specificity of the tetracycline repressor (TetR) family transcription regulators (TFRs). First, a genome sequence-based method was streamlined with quantitative P-values defined to filter out reliable predictions. Then, a framework was introduced to incorporate structural data and to train a statistical energy function to score the pairing between TFR and TFR binding site (TFBS) based on sequences. The predictions benchmarked against experiments, TFBSs for 29 out of 30 TFRs were correctly predicted by either the genome sequence-based or the statistical energy-based method. Using P-values or Z-scores as indicators, we estimate that 59.6% of TFRs are covered with relatively reliable predictions by at least one of the two methods, while only 28.7% are covered by the genome sequence-based method alone. Our approach predicts a large number of new TFBs which cannot be correctly retrieved from public databases such as FootprintDB. High-throughput experimental assays suggest that the statistical energy can model the TFBSs of a significant number of TFRs reliably. Thus the energy function may be applied to explore for new TFBSs in respective genomes. It is possible to extend our approach to other transcriptional factor families with sufficient structural information.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 246
Author(s):  
Xiaomeng Chen ◽  
Rui Li ◽  
Yonglin Wang ◽  
Aining Li

An emerging poplar canker caused by the gram-negative bacterium, Lonsdalea populi, has led to high mortality of hybrid poplars Populus × euramericana in China and Europe. The molecular bases of pathogenicity and bark adaptation of L. populi have become a focus of recent research. This study revealed the whole genome sequence and identified putative virulence factors of L. populi. A high-quality L. populi genome sequence was assembled de novo, with a genome size of 3,859,707 bp, containing approximately 3434 genes and 107 RNAs (75 tRNA, 22 rRNA, and 10 ncRNA). The L. populi genome contained 380 virulence-associated genes, mainly encoding for adhesion, extracellular enzymes, secretory systems, and two-component transduction systems. The genome had 110 carbohydrate-active enzyme (CAZy)-coding genes and putative secreted proteins. The antibiotic-resistance database annotation listed that L. populi was resistant to penicillin, fluoroquinolone, and kasugamycin. Analysis of comparative genomics found that L. populi exhibited the highest homology with the L. britannica genome and L. populi encompassed 1905 specific genes, 1769 dispensable genes, and 1381 conserved genes, suggesting high evolutionary diversity and genomic plasticity. Moreover, the pan genome analysis revealed that the N-5-1 genome is an open genome. These findings provide important resources for understanding the molecular basis of the pathogenicity and biology of L. populi and the poplar-bacterium interaction.


Sign in / Sign up

Export Citation Format

Share Document