scholarly journals Impact of human gene annotations on RNA-seq differential expression analysis

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu Hamaguchi ◽  
Chao Zeng ◽  
Michiaki Hamada

Abstract Background Differential expression (DE) analysis of RNA-seq data typically depends on gene annotations. Different sets of gene annotations are available for the human genome and are continually updated–a process complicated with the development and application of high-throughput sequencing technologies. However, the impact of the complexity of gene annotations on DE analysis remains unclear. Results Using “mappability”, a metric of the complexity of gene annotation, we compared three distinct human gene annotations, GENCODE, RefSeq, and NONCODE, and evaluated how mappability affected DE analysis. We found that mappability was significantly different among the human gene annotations. We also found that increasing mappability improved the performance of DE analysis, and the impact of mappability mainly evident in the quantification step and propagated downstream of DE analysis systematically. Conclusions We assessed how the complexity of gene annotations affects DE analysis using mappability. Our findings indicate that the growth and complexity of gene annotations negatively impact the performance of DE analysis, suggesting that an approach that excludes unnecessary gene models from gene annotations improves the performance of DE analysis.

2021 ◽  
Author(s):  
Yu Hamaguchi ◽  
Chao Zeng ◽  
Michiaki Hamada

Abstract Background: Differential expression (DE) analysis of RNA-seq data typically depends on gene annotations. Different sets of gene annotations are available for the human genome and are continually updated–a process complicated with the development and application of high-throughput sequencing technologies. However, the impact of the complexity of gene annotations on DE analysis remains unclear.Results: Using “mappability”, a metric of the complexity of gene annotation, we compared three distinct human gene annotations, GENCODE, RefSeq, and NONCODE, and evaluated how mappability affected DE analysis. We found that mappability was significantly different among the human gene annotations. We also found that increasing mappability improved the performance of DE analysis, and the impact of mappability mainly evident in the quantification step and propagated downstream of DE analysis systematically.Conclusions: We assessed how the complexity of gene annotations affects DE analysis using mappability. Our findings indicate that the growth and complexity of gene annotations negatively impact the performance of DE analysis, suggesting that an approach that excludes unnecessary gene models from gene annotations improves the performance of DE analysis.


2014 ◽  
Author(s):  
Simon Anders ◽  
Paul Theodor Pyl ◽  
Wolfgang Huber

Motivation: A large choice of tools exists for many standard tasks in the analysis of high-throughput sequencing (HTS) data. However, once a project deviates from standard work flows, custom scripts are needed. Results: We present HTSeq, a Python library to facilitate the rapid development of such scripts. HTSeq offers parsers for many common data formats in HTS projects, as well as classes to represent data such as genomic coordinates, sequences, sequencing reads, alignments, gene model information, variant calls, and provides data structures that allow for querying via genomic coordinates. We also present htseq-count, a tool developed with HTSeq that preprocesses RNA-Seq data for differential expression analysis by counting the overlap of reads with genes. Availability: HTSeq is released as open-source software under the GNU General Public Licence and available from http://www-huber.embl.de/HTSeq or from the Python Package Index, https://pypi.python.org/pypi/HTSeq


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1947
Author(s):  
Samarendra Das ◽  
Anil Rai ◽  
Michael L. Merchant ◽  
Matthew C. Cave ◽  
Shesh N. Rai

Single-cell RNA-sequencing (scRNA-seq) is a recent high-throughput sequencing technique for studying gene expressions at the cell level. Differential Expression (DE) analysis is a major downstream analysis of scRNA-seq data. DE analysis the in presence of noises from different sources remains a key challenge in scRNA-seq. Earlier practices for addressing this involved borrowing methods from bulk RNA-seq, which are based on non-zero differences in average expressions of genes across cell populations. Later, several methods specifically designed for scRNA-seq were developed. To provide guidance on choosing an appropriate tool or developing a new one, it is necessary to comprehensively study the performance of DE analysis methods. Here, we provide a review and classification of different DE approaches adapted from bulk RNA-seq practice as well as those specifically designed for scRNA-seq. We also evaluate the performance of 19 widely used methods in terms of 13 performance metrics on 11 real scRNA-seq datasets. Our findings suggest that some bulk RNA-seq methods are quite competitive with the single-cell methods and their performance depends on the underlying models, DE test statistic(s), and data characteristics. Further, it is difficult to obtain the method which will be best-performing globally through individual performance criterion. However, the multi-criteria and combined-data analysis indicates that DECENT and EBSeq are the best options for DE analysis. The results also reveal the similarities among the tested methods in terms of detecting common DE genes. Our evaluation provides proper guidelines for selecting the proper tool which performs best under particular experimental settings in the context of the scRNA-seq.


2015 ◽  
Author(s):  
Rahul Reddy

As RNA-Seq and other high-throughput sequencing grow in use and remain critical for gene expression studies, technical variability in counts data impedes studies of differential expression studies, data across samples and experiments, or reproducing results. Studies like Dillies et al. (2013) compare several between-lane normalization methods involving scaling factors, while Hansen et al. (2012) and Risso et al. (2014) propose methods that correct for sample-specific bias or use sets of control genes to isolate and remove technical variability. This paper evaluates four normalization methods in terms of reducing intra-group, technical variability and facilitating differential expression analysis or other research where the biological, inter-group variability is of interest. To this end, the four methods were evaluated in differential expression analysis between data from Pickrell et al. (2010) and Montgomery et al. (2010) and between simulated data modeled on these two datasets. Though the between-lane scaling factor methods perform worse on real data sets, they are much stronger for simulated data. We cannot reject the recommendation of Dillies et al. to use TMM and DESeq normalization, but further study of power to detect effects of different size under each normalization method is merited.


2019 ◽  
Author(s):  
Emilie Lejal ◽  
Agustín Estrada-Peña ◽  
Maud Marsot ◽  
Jean-François Cosson ◽  
Olivier Rué ◽  
...  

AbstractBackgroundThe development of high throughput sequencing technologies has substantially improved analysis of bacterial community diversity, composition, and functions. Over the last decade, high throughput sequencing has been used extensively to identify the diversity and composition of tick microbial communities. However, a growing number of studies are warning about the impact of contamination brought along the different steps of the analytical process, from DNA extraction to amplification. In low biomass samples, e.g. individual tick samples, these contaminants may represent a large part of the obtained sequences, and thus generate considerable errors in downstream analyses and in the interpretation of results. Most studies of tick microbiota either do not mention the inclusion of controls during the DNA extraction or amplification steps, or consider the lack of an electrophoresis signal as an absence of contamination. In this context, we aimed to assess the proportion of contaminant sequences resulting from these steps. We analyzed the microbiota of individual Ixodes ricinus ticks by including several categories of controls throughout the analytical process: crushing, DNA extraction, and DNA amplification.ResultsControls yielded a significant number of sequences (1,126 to 13,198 mean sequences, depending on the control category). Some operational taxonomic units (OTUs) detected in these controls belong to genera reported in previous tick microbiota studies. In this study, these OTUs accounted for 50.9% of the total number of sequences in our samples, and were considered contaminants. Contamination levels (i.e. the percentage of sequences belonging to OTUs identified as contaminants) varied with tick stage and gender: 76.3% of nymphs and 75% of males demonstrated contamination over 50%, while most females (65.7%) had rates lower than 20%. Contamination mainly corresponded to OTUs detected in crushing and DNA extraction controls, highlighting the importance of carefully controlling these steps.ConclusionHere, we showed that contaminant OTUs from extraction and amplification steps can represent more than half the total sequence yield in sequencing runs, and lead to unreliable results when characterizing tick microbial communities. We thus strongly advise the routine use of negative controls in tick microbiota studies, and more generally in studies involving low biomass samples.


2020 ◽  
Author(s):  
Daniel Dimitrov ◽  
Quan Gu

AbstractRNA sequencing is a high-throughput sequencing technique considered as an indispensable research tool used in a broad range of transcriptome analysis studies. The most common application of RNA Sequencing is Differential Expression analysis and it is used to determine genetic loci with distinct expression across different conditions. On the other hand, an emerging field called single-cell RNA sequencing is used for transcriptome profiling at the individual cell level. The standard protocols for both these types of analyses include the processing of sequencing libraries and result in the generation of count matrices. An obstacle to these analyses and the acquisition of meaningful results is that both require programming expertise.BingleSeq was developed as an intuitive application that provides a user-friendly solution for the analysis of count matrices produced by both Bulk and Single-cell RNA-Seq experiments. This was achieved by building an interactive dashboard-like user interface and incorporating three state-of-the-art software packages for each type of the aforementioned analyses, alongside additional features such as key visualisation techniques, functional gene annotation analysis and rank-based consensus for differential gene analysis results, among others. As a result, BingleSeq puts the best and most widely used packages and tools for RNA-Seq analyses at the fingertips of biologists with no programming experience.


2015 ◽  
Author(s):  
Pavel Zakharov ◽  
Alexey Sergushichev ◽  
Alexander Predeus ◽  
Maxim Artyomov

RNA-seq is a powerful tool for gene expression profiling and differential expression analysis. Its power depends on sequencing depth which limits its high-throughput potential, with 10-15 million reads considered as optimal balance between quality of differential expression calling and cost per sample. We observed, however, that some statistical features of the data, e.g. gene count distribution, are preserved well below 10-15M reads, and found that they improve differential expression analysis at low sequencing depths when distribution statistics is estimated by pooling individual samples to a combined higher-depth library. Using a novel gene-by-gene scaling technique, based on the fact that gene counts obey Pareto-like distribution, we re-normalize samples towards bigger sequencing depth and show that this leads to significant improvement in differential expression calling, with only a marginal increase in false positive calls. This makes differential expression calling from 3-4M reads comparable to 10-15M reads, improving high-throughput of RNA-sequencing 3-4 fold.


2015 ◽  
Author(s):  
Swati Parekh ◽  
Christoph Ziegenhain ◽  
Beate Vieth ◽  
Wolfgang Enard ◽  
Ines Hellmann

Background Currently quantitative RNA-Seq methods are pushed to work with increasingly small starting amounts of RNA that require PCR amplification to generate libraries. However, it is unclear how much noise or bias amplification introduces and how this effects precision and accuracy of RNA quantification. To assess the effects of amplification, reads that originated from the same RNA molecule (PCR-duplicates) need to be identified. Computationally, read duplicates are defined via their mapping position, which does not distinguish PCR- from natural duplicates that are bound to occur for highly transcribed RNAs. Hence, it is unclear how to treat duplicate reads and how important it is to reduce PCR amplification experimentally. Here, we generate and analyse RNA-Seq datasets that were prepared with three different protocols (Smart-Seq, TruSeq and UMI-seq). We find that a large fraction of computationally identified read duplicates can be explained by sampling and fragmentation bias. Consequently, the computational removal of duplicates does not improve accuracy, power or false discovery rates, but can actually worsen them. Even when duplicates are experimentally identified by unique molecular identifiers (UMIs), power and false discovery rate are only mildly improved. However, we do find that power does improve with fewer PCR amplification cycles across datasets and that early barcoding of samples and hence PCR amplification in one reaction can restore this loss of power. Conclusions Computational removal of read duplicates is not recommended for differential expression analysis. However, the pooling of samples as made possible by the early barcoding of the UMI-protocol leads to an appreciable increase in the power to detect differentially expressed genes.


Sign in / Sign up

Export Citation Format

Share Document