scholarly journals Transcriptome shifts triggered by vitamin A and SCD genotype interaction in Duroc pigs

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Emma Solé ◽  
Rayner González-Prendes ◽  
Yelyzaveta Oliinychenko ◽  
Marc Tor ◽  
Roger Ros-Freixedes ◽  
...  

Abstract Background The composition of intramuscular fat depends on genetic and environmental factors, including the diet. In pigs, we identified a haplotype of three SNP mutations in the stearoyl-coA desaturase (SCD) gene promoter associated with higher content of monounsaturated fatty acids in intramuscular fat. The second of these three SNPs (rs80912566, C > T) affected a putative retinol response element in the SCD promoter. The effect of dietary vitamin A restriction over intramuscular fat content is controversial as it depends on the pig genetic line and the duration of the restriction. This study aims to investigate changes in the muscle transcriptome in SCD rs80912566 TT and CC pigs fed with and without a vitamin A supplement during the fattening period. Results Vitamin A did not affect carcass traits or intramuscular fat content and fatty acid composition, but we observed an interaction between vitamin A and SCD genotype on the desaturation of fatty acids in muscle. As reported before, the SCD-TT pigs had more monounsaturated fat than the SCD-CC animals. The diet lacking the vitamin A supplement enlarged fatty acid compositional differences between SCD genotypes, partly because vitamin A had a bigger effect on fatty acid desaturation in SCD-CC pigs (positive) than in SCD-TT and SCD-TC animals (negative). The interaction between diet and genotype was also evident at the transcriptome level; the highest number of differentially expressed genes were detected between SCD-TT pigs fed with the two diets. The genes modulated by the diet with the vitamin A supplement belonged to metabolic and signalling pathways related to immunity and inflammation, transport through membrane-bounded vesicles, fat metabolism and transport, reflecting the impact of retinol on a wide range of metabolic processes. Conclusions Restricting dietary vitamin A during the fattening period did not improve intramuscular fat content despite relevant changes in muscle gene expression, both in coding and non-coding genes. Vitamin A activated general pathways of retinol response in a SCD genotype-dependant manner, which affected the monounsaturated fatty acid content, particularly in SCD-CC pigs.

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 386
Author(s):  
Marc Tor ◽  
Francesca Vilaró ◽  
Roger Ros-Freixedes ◽  
Javier Álvarez-Rodríguez ◽  
Lluís Bosch ◽  
...  

Circulating non-esterified fatty acids (NEFA) can reflect the composition of dietary fat or adipose tissues depending on the fasting conditions. Therefore, circulating NEFA may be valuable as biomarkers for meat quality traits, such as intramuscular fat content and fatty acid composition in finishing pigs. Genetic variants that regulate lipid metabolism can also modulate the circulating NEFA. We conducted an experiment with 150 heavy Duroc pigs to evaluate fluctuations in the circulating NEFA composition due to age, fasting duration and two genetic polymorphisms, one in the leptin receptor (LEPR; rs709596309) and one in the stearoyl-CoA desaturase (SCD; rs80912566) gene. Circulating NEFA were more saturated and less monounsaturated than the subcutaneous and intramuscular adipose tissues. Absolute circulating NEFA content was more influenced by fasting duration than age. The SCD polymorphism did not impact NEFA content or composition. The LEPR polymorphism affected the content but not the fatty acid composition. Circulating oleic acid NEFA content after a short fasting was positively correlated with intramuscular fat content and, after a long fasting, with intramuscular oleic acid content. We conclude that circulating NEFA reflect environmental and genetic metabolic changes but are of limited value as biomarkers for intramuscular fat content and fatty acid composition.


Author(s):  
Renata Mikolášová ◽  
Tomáš Urban

The leptin (LEP-HinfI), leptin receptor (LEPR-HpaII) and heart fatty acid binding protein (H-FABP-HinfI) genes and their genotypes combination (LEP-HinfI *LEPR-HpaII) were tested for associations with the pH1, pH24, myoglobin content (mg/100 g), intramuscular fat content (%) and remission (%). The genotypes were determined in Large White, Landrace and Duroc breeds (n = 106, 56 and 4, respectively). The allele frequencies were: LEP-HinfI: C = 0.133 T = 0.867; LEPR-HpaII: A = 0.331 B = 0.669; H-FABP-HinfI: H = 0.745 h = 0.255. The populations of breeds were in the genetic equilibrium according to the χ2 test in the tested loci. The combinations of LEP-HinfI and LEPR-HpaII were significantly associated with the pH24 and remission. The H-FABP-HinfI locus was significantly associated with intramuscular fat content.


2019 ◽  
Vol 79 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Leanne Hodson ◽  
Fredrik Rosqvist ◽  
Siôn A Parry

Non-alcoholic fatty liver disease encompasses a spectrum of conditions from hepatic steatosis through to cirrhosis; obesity is a known risk factor. The liver plays a major role in regulating fatty acid metabolism and perturbations in intrahepatic processes have potential to impact on metabolic health. It remains unclear why intra-hepatocellular fat starts to accumulate, but it likely involves an imbalance between fatty acid delivery to the liver, fatty acid synthesis and oxidation within the liver and TAG export from the liver. As man spends the majority of the day in a postprandial rather than postabsorptive state, dietary fatty acid intake should be taken into consideration when investigating why intra-hepatic fat starts to accumulate. This review will discuss the impact of the quantity and quality of dietary fatty acids on liver fat accumulation and metabolism, along with some of the potential mechanisms involved. Studies investigating the role of dietary fat in liver fat accumulation, although surprisingly limited, have clearly demonstrated that it is total energy intake, rather than fat intake per se, that is a key mediator of liver fat content; hyperenergetic diets increase liver fat whilst hypoenergetic diets decrease liver fat content irrespective of total fat content. Moreover, there is now, albeit limited evidence emerging to suggest the composition of dietary fat may also play a role in liver fat accumulation, with diets enriched in saturated fat appearing to increase liver fat content to a greater extent when compared with diets enriched in unsaturated fats.


2012 ◽  
Vol 54 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Wei Wang ◽  
Wenda Xue ◽  
Bangquan Jin ◽  
Xixia Zhang ◽  
Fei Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document