scholarly journals Photosynthetic characteristics and chloroplast ultrastructure of welsh onion (Allium fistulosum L.) grown under different LED wavelengths

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  
2019 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to their photosynthetic performance. Because of this, in recent years LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to light quality. The influence of light quality on photosynthesis needs to be further explored to provide theoretical guidance for the adjustment of the light environment in industrial crop production. This study tested the effects of different qualities of LED lighting (white, W; blue, B; green, G; yellow, Y; and red, R) with the same photosynthetic photon flux density (300 μmol/m2·s) on the growth and development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion (Allium fistulosum L.) plants. The results showed that the plant height, leaf area, and fresh weight of plants in the W and B treatments were significantly higher than those in the other treatments. The photosynthetic pigment content and net photosynthetic rate (Pn) in the W treatment were significantly higher than those in the monochromatic light treatments, while the transpiration rate (E) and stomatal conductance (Gs) were the highest in the B treatment, and the intercellular CO2 concentration (Ci) was the highest in the Y treatment. Among the chlorophyll fluorescence characteristics tested, the non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, while the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv'/Fm'), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR) all differed among treatments in the following order: W > B > R > G > Y. Both leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. In summary, in addition to W light, B light significantly improved the photosynthetic efficiency of Welsh onion, whereas Y light significantly reduced the photosynthetic efficiency of this plant.


2020 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract Background: The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to their photosynthetic performance, and in recent years, LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to different wavelengths of light. Thus, the influence of artificial light on photosynthesis requires further investigation to provide theoretical guidelines for the light environments used in industrial crop production. In this study, we tested the effects of different LEDs (white, W; blue, B; green, G; yellow, Y; and red, R) with the same photon flux density (300 μmol/m 2 ·s) on the growth, development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion ( Allium fistulosum L.) plants. Results: Plants in the W and B treatments had significantly higher height, leaf area, and fresh weight than those in the other treatments. The photosynthetic pigment content and net photosynthetic rate ( P n ) in the W treatment were significantly higher than those in the monochromatic light treatments, the transpiration rate ( E ) and stomatal conductance ( G s ) were the highest in the B treatment, and the intercellular CO 2 concentration ( C i ) was the highest in the Y treatment. The non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, but the other chlorophyll fluorescence characteristics differed among treatments in the following order: W > B > R > G > Y. This includes the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv′/Fm′), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR). Finally, the leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. Conclusions: White and blue light significantly improved the photosynthetic efficiency of Welsh onions, whereas yellow light reduced the photosynthetic efficiency.


2019 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract Background: The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to theirphotosynthetic performance. Because of this, in recent years LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to light quality. The influence of light quality on photosynthesis needs to be further explored to provide theoretical guidance for the adjustment of the light environment in industrial crop production. This study tested the effects of different qualities of LED lighting (white, W; blue, B; green, G; yellow, Y; and red, R) with the sama photon flux density (300 μmol/m2·s) on the growth and development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion (Allium fistulosum L.) plants. Results: The results showed that the plant height, leaf area, and fresh weight of plants in the W and B treatments were significantly higher than those in the other treatments. The photosynthetic pigment content and net photosynthetic ratein the W treatment were significantly higher than those in the monochromatic light treatments, while the transpiration rate (E) and stomatal conductance (Gs) were the highest in the B treatment, and the intercellular CO2 concentration (Ci) was the highest in the Y treatment. Among the chlorophyll fluorescence characteristics tested, the non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, while the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv'/Fm'), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR) all differed among treatments in the following order: W > B > R > G > Y. Both leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. Conclusions: In summary, in addition to W light, B light significantly improved the photosynthetic efficiency of Welsh onion, whereas Y light significantly reduced the photosynthetic efficiency of this plant.


2019 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract Background: The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to their photosynthetic performance. Because of this, in recent years LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to light quality. The influence of light quality on photosynthesis needs to be further explored to provide theoretical guidance for the adjustment of the light environment in industrial crop production. This study tested the effects of different qualities of LED lighting (white, W; blue, B; green, G; yellow, Y; and red, R) with the same photon flux density (300 μmol/m2·s) on the growth and development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion (Allium fistulosum L.) plants. Results: The results showed that the plant height, leaf area, and fresh weight of plants in the W and B treatments were significantly higher than those in the other treatments. The photosynthetic pigment content and net photosynthetic rate (Pn) in the W treatment were significantly higher than those in the monochromatic light treatments, while the transpiration rate (E) and stomatal conductance (Gs) were the highest in the B treatment, and the intercellular CO2 concentration (Ci) was the highest in the Y treatment. Among the chlorophyll fluorescence characteristics tested, the non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, while the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv'/Fm'), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR) all differed among treatments in the following order: W > B > R > G > Y. Both leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. Conclusions: In summary, in addition to W light, B light significantly improved the photosynthetic efficiency of Welsh onion, whereas Y light significantly reduced the photosynthetic efficiency of this plant.


2020 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract Background: The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to their photosynthetic performance, and in recent years, LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to different wavelengths of light. Thus, the influence of artificial light on photosynthesis requires further investigation to provide theoretical guidelines for the light environments used in industrial crop production. In this study, we tested the effects of different LEDs (white, W; blue, B; green, G; yellow, Y; and red, R) with the same photon flux density (300 μmol/m 2 ·s) on the growth, development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion ( Allium fistulosum L.) plants. Results: Plants in the W and B treatments had significantly higher height, leaf area, and fresh weight than those in the other treatments. The photosynthetic pigment content and net photosynthetic rate ( P n ) in the W treatment were significantly higher than those in the monochromatic light treatments, the transpiration rate ( E ) and stomatal conductance ( G s ) were the highest in the B treatment, and the intercellular CO 2 concentration ( C i ) was the highest in the Y treatment. The non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, but the other chlorophyll fluorescence characteristics differed among treatments in the following order: W > B > R > G > Y. This includes the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv′/Fm′), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR). Finally, the leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. Conclusions: White and blue light significantly improved the photosynthetic efficiency of Welsh onions, whereas yellow light reduced the photosynthetic efficiency.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 574
Author(s):  
Adrian Bogdan Țigu ◽  
Cristian Silviu Moldovan ◽  
Vlad-Alexandru Toma ◽  
Anca Daniela Farcaș ◽  
Augustin Cătălin Moț ◽  
...  

Allium sativum L. (garlic bulbs) and Allium fistulosum L. (Welsh onion leaves) showed quantitative differences of identified compounds: allicin and alliin (380 µg/mL and 1410 µg/mL in garlic; 20 µg/mL and 145 µg/mL in Welsh onion), and the phenolic compounds (chlorogenic acid, p-coumaric acid, ferulic acid, gentisic acid, 4-hydroxybenzoic acid, kaempferol, isoquercitrin, quercitrin, quercetin, and rutin). The chemical composition determined the inhibitory activity of Allium extracts in a dose-dependent manner, on human normal cells (BJ-IC50 0.8841% garlic/0.2433% Welsh onion and HaCaT-IC50 1.086% garlic/0.6197% Welsh onion) and tumor cells (DLD-1-IC50 5.482%/2.124%; MDA-MB-231-IC50 6.375%/2.464%; MCF-7-IC50 6.131%/3.353%; and SK-MES-1-IC50 4.651%/5.819%). At high concentrations, the cytotoxic activity of each extract, on normal cells, was confirmed by: the 50% of the growth inhibition concentration (IC50) value, the cell death induced by necrosis, and biochemical determination of LDH, catalase, and Caspase-3. The four tumor cell lines treated with high concentrations (10%, 5%, 2.5%, and 1.25%) of garlic extract showed different sensibility, appreciated on the base of IC50 value for the most sensitive cell line (SK-MES-1), and the less sensitive (MDA-MB-231) cell line. The high concentrations of Welsh onion extract (5%, 2.5%, and 1.25%) induced pH changes in the culture medium and SK-MES-1 being the less sensitive cell line.


2006 ◽  
Vol 75 (2) ◽  
pp. 322-328 ◽  
Author(s):  
Rajendra Gyawali ◽  
Hye-Young Seo ◽  
Hyun-Ju Lee ◽  
Hyun-Pa Song ◽  
Dong-Ho Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document