scholarly journals Comparative transcriptomic analysis reveals the regulatory mechanism of the gibberellic acid pathway of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) dwarf mutants

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhaoxia Sun ◽  
Xinfang Wang ◽  
Ronghua Liu ◽  
Wei Du ◽  
Mingchuan Ma ◽  
...  

AbstractBackgroundTartary buckwheat is an important minor crop species with high nutritional and medicinal value and is widely planted worldwide. Cultivated Tartary buckwheat plants are tall and have hollow stems that lodge easily, which severely affects their yield and hinders the development of the Tartary buckwheat industry.MethodsHeifeng No. 1 seeds were treated with ethylmethanesulfonate (EMS) to generate a mutant library. The dwarf mutantftdmwas selected from the mutagenized population, and the agronomic characteristics giving rise to the dwarf phenotype were evaluated. Ultra-fast liquid chromatography-electrospray ionization tandem mass spectrometry (UFLC-ESI–MS/MS) was performed to determine the factors underlying the different phenotypes between the wild-type (WT) andftdmplants. In addition, RNA sequencing (RNA-seq) was performed via the HiSeq 2000 platform, and the resulting transcriptomic data were analysed to identify differentially expressed genes (DEGs). Single-nucleotide polymorphism (SNP) variant analysis revealed possible sites associated with dwarfism. The expression levels of the potential DEGs between the WT andftdmmutant were then measured via qRT-PCR and fragments per kilobase of transcript per million mapped reads (FPKM).ResultThe plant height (PH) of theftdmmutant decreased to 42% of that of the WT, and compared with the WT, the mutant and had a higher breaking force (BF) and lower lodging index (LI). Lower GA4 and GA7 contents and higher contents of jasmonic acid (JA), salicylic acid (SA) and brassinolactone (BR) were detected in the stems of theftdmmutant compared with the WT. Exogenous application of GAs could not revert the dwarfism of theftdmmutant. On the basis of the transcriptomic analysis, 146 homozygous SNP loci were identified. In total, 12 DEGs with nonsynonymous mutations were ultimately identified, which were considered potential candidate genes related to the dwarf trait. When the sequences of eight genes whose expression was downregulated and four genes whose expression was upregulated were compared, SKIP14, an F-box protein whose sequence is 85% homologous to that of SLY1 in Arabidopsis, presented an amino acid change (from Ser to Asn) and was expressed at a lower level in the stems of theftdmmutant compared with the WT. Hence, we speculated that this amino acid change in SKIP14 resulted in a disruption in GA signal transduction, indirectly decreasing the GA content and downregulating the expression of genes involved in GA biosynthesis or the GA response. Further studies are needed to determine the molecular basis underlying the dwarf phenotype of theftdmmutant.ConclusionWe report a Tartary buckwheat EMS dwarf mutant,ftdm, suitable for high-density planting and commercial farming. A significant decrease in GA4 and GA7 levels was detected in theftdmmutant, and 12 DEGs expressed in the stems of theftdmmutant were selected as candidates of the dwarfing gene. One nonsynonymous mutation was detected in theSKIP14gene in theftdmmutant, and this gene had a lower transcript level compared with that in the WT.

2021 ◽  
Author(s):  
Chong Tan ◽  
Jie Ren ◽  
Lin Wang ◽  
Xueling Ye ◽  
Wei Fu ◽  
...  

Abstract Background: Flowering is an important inflection point in the transformation from vegetative to reproductive growth, and premature bolting severely decreases crop yield and quality. Results: In this study, a stable early-bolting mutant, ebm3, was identified in an ethyl methanesulfonate (EMS)-mutagenized population of a Chinese cabbage doubled haploid (DH) line ‘FT’. Compared with ‘FT’, ebm3 showed early bolting under natural cultivation in autumn, and curled leaves. Genetic analysis showed that the early-bolting phenotype was controlled by a single recessive nuclear gene. Modified MutMap and genotyping analyses revealed that Brebm3 (BraA04g017190.3C), encoding the histone methyltransferase CURLY LEAF (CLF), was the causal gene of the emb3. A C to T base substitution in the 14th exon of Brebm3 resulted in an amino acid change (S to F) and the early-bolting phenotype of emb3. The mutation occurred in the SET domain (Suppressor of protein-effect variegation 3-9, Enhancer-of-zeste, Trithorax), which catalyzes site- and state-specific lysine methylation in histones. Tissue-specific expression analysis showed that Brebm3 was highly expressed in the flower and bud. Promoter activity assay confirmed that Brebm3 promoter was active in inflorescences. Subcellular localization analysis revealed that Brebm3 localized in the nucleus. Transcriptomic studies supported that Brebm3 mutation might repress H3K27me3 deposition and activate expression of the AGAMOUS (AG) and AGAMOUS-like (AGL) loci, resulting in early flowering.Conclusions: Our study revealed that an EMS-induced early-bolting mutant ebm3 in Chinese cabbage was caused by a nonsynonymous mutation in BraA04g017190.3C, encoding the histone methyltransferase CLF.These results improve our knowledge of the genetic and genomic resources of bolting and flowering, and may be beneficial to the genetic improvement of Chinese cabbage.


2009 ◽  
Vol 90 (7) ◽  
pp. 1741-1747 ◽  
Author(s):  
Tahir H. Malik ◽  
Candie Wolbert ◽  
Laura Nerret ◽  
Christian Sauder ◽  
Steven Rubin

It has previously been shown that three amino acid changes, one each in the fusion (F; Ala/Thr-91→Thr), haemagglutinin–neuraminidase (HN; Ser-466→Asn) and polymerase (L; Ile-736→Val) proteins, are associated with attenuation of a neurovirulent clinical isolate of mumps virus (88-1961) following serial passage in vitro. Here, using full-length cDNA plasmid clones and site-directed mutagenesis, it was shown that the single amino acid change in the HN protein and to a lesser extent, the change in the L protein, resulted in neuroattenuation, as assessed in rats. The combination of both amino acid changes caused neuroattenuation of the virus to levels previously reported for the clinical isolate following attenuation in vitro. The amino acid change in the F protein, despite having a dramatic effect on protein function in vitro, was previously shown to not be involved in the observed neuroattenuation, highlighting the importance of conducting confirmatory in vivo studies. This report provides additional supporting evidence for the role of the HN protein as a virulence factor and, as far as is known, is the first report to associate an amino acid change in the L protein with mumps virus neuroattenuation.


Author(s):  
Gangjun Zhao ◽  
Caixia Luo ◽  
Jianning Luo ◽  
Junxing Li ◽  
Hao Gong ◽  
...  

Abstract Key message A dwarfism gene LacDWARF1 was mapped by combined BSA-Seq and comparative genomics analyses to a 65.4 kb physical genomic region on chromosome 05. Abstract Dwarf architecture is one of the most important traits utilized in Cucurbitaceae breeding because it saves labor and increases the harvest index. To our knowledge, there has been no prior research about dwarfism in the sponge gourd. This study reports the first dwarf mutant WJ209 with a decrease in cell size and internodes. A genetic analysis revealed that the mutant phenotype was controlled by a single recessive gene, which is designated Lacdwarf1 (Lacd1). Combined with bulked segregate analysis and next-generation sequencing, we quickly mapped a 65.4 kb region on chromosome 5 using F2 segregation population with InDel and SNP polymorphism markers. Gene annotation revealed that Lac05g019500 encodes a gibberellin 3β-hydroxylase (GA3ox) that functions as the most likely candidate gene for Lacd1. DNA sequence analysis showed that there is an approximately 4 kb insertion in the first intron of Lac05g019500 in WJ209. Lac05g019500 is transcribed incorrectly in the dwarf mutant owing to the presence of the insertion. Moreover, the bioactive GAs decreased significantly in WJ209, and the dwarf phenotype could be restored by exogenous GA3 treatment, indicating that WJ209 is a GA-deficient mutant. All these results support the conclusion that Lac05g019500 is the Lacd1 gene. In addition, RNA-Seq revealed that many genes, including those related to plant hormones, cellular process, cell wall, membrane and response to stress, were significantly altered in WJ209 compared with the wild type. This study will aid in the use of molecular marker-assisted breeding in the dwarf sponge gourd.


FEBS Letters ◽  
2000 ◽  
Vol 470 (2) ◽  
pp. 135-138 ◽  
Author(s):  
H. Vais ◽  
S. Atkinson ◽  
N. Eldursi ◽  
A.L. Devonshire ◽  
M.S. Williamson ◽  
...  

2012 ◽  
Vol 58 (5) ◽  
pp. 589-595
Author(s):  
Guy Lemay ◽  
Martin Bisaillon

Many temperature-sensitive mutants have been isolated in early studies of mammalian reovirus. However, the biological properties and nature of the genetic alterations remain incompletely explored for most of these mutants. The mutation harbored by the tsI138 mutant was already assigned to the L3 gene encoding the λ1 protein. In the present study, this mutant was further studied as a possible tool to establish the role of the putative λ1 enzymatic activities in viral multiplication. It was observed that synthesis of viral proteins is only marginally reduced, while it was difficult to recover viral particles at the nonpermissive temperature. A single nucleotide substitution resulting in an amino acid change was found; the position of this amino acid is consistent with a probable defect in assembly of the inner capsid at the nonpermissive temperature.


2001 ◽  
Vol 45 (9) ◽  
pp. 2598-2603 ◽  
Author(s):  
Laurent Poirel ◽  
Gerhard F. Weldhagen ◽  
Thierry Naas ◽  
Christophe De Champs ◽  
Michael G. Dove ◽  
...  

ABSTRACT Pseudomonas aeruginosa GW-1 was isolated in 2000 in South Africa from blood cultures of a 38-year-old female who developed nosocomial pneumonia. This isolate harbored a self-transferable ca. 100-kb plasmid that conferred an expanded-spectrum cephalosporin resistance profile associated with an intermediate susceptibility to imipenem. A β-lactamase gene, bla GES-2, was cloned from whole-cell DNA of P. aeruginosa GW-1 and expressed in Escherichia coli. GES-2, with a pI value of 5.8, hydrolyzed expanded-spectrum cephalosporins, and its substrate profile was extended to include imipenem compared to that of GES-1, identified previously in Klebsiella pneumoniae. GES-2 activity was less inhibited by clavulanic acid, tazobactam and imipenem than GES-1. The GES-2 amino acid sequence differs from that of GES-1 by a glycine-to-asparagine substitution in position 170 located in the omega loop of Ambler class A enzymes. This amino acid change may explain the extension of the substrate profile of the plasmid-encoded β-lactamase GES-2.


Sign in / Sign up

Export Citation Format

Share Document