dwarf mutant
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 32)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Chenhui Ma ◽  
Abdul Rehman ◽  
Hong Ge Li ◽  
Zi Bo Zhao ◽  
Gaofei Sun ◽  
...  

Abstract Background Upland Cotton (Gossypium hirsutum L.) has few cotton varieties suitable for mechanical harvesting. The plant height of the cultivar is one of the key features that need to modify. Hence, this study was planned to locate the QTL for plant height in a 60Co γ treated upland cotton semi-dwarf mutant Ari1327. Results Interestingly, bulk segregant analysis (BSA) and genotyping by sequencing (GBS) methods exhibited that candidate QTL was co-located in the region of 5.80–9.66 Mb at D01 chromosome in two F2 populations. Using three InDel markers to genotype a population of 1241 individuals confirmed that the offspring’s phenotype is consistent with the genotype. Comparative analysis of RNA-seq between the mutant and wild variety exhibited that Gh_D01G0592 was identified as the source of dwarfness from 200 genes. In addition, it was also revealed that the appropriate use of partial separation markers in QTL mapping can escalate linkage information. Conclusions Overwhelmingly, the results will provide the basis to reveal the function of candidate genes and the utilization of excellent dwarf genetic resources in the future.


Author(s):  
Gangjun Zhao ◽  
Caixia Luo ◽  
Jianning Luo ◽  
Junxing Li ◽  
Hao Gong ◽  
...  

Abstract Key message A dwarfism gene LacDWARF1 was mapped by combined BSA-Seq and comparative genomics analyses to a 65.4 kb physical genomic region on chromosome 05. Abstract Dwarf architecture is one of the most important traits utilized in Cucurbitaceae breeding because it saves labor and increases the harvest index. To our knowledge, there has been no prior research about dwarfism in the sponge gourd. This study reports the first dwarf mutant WJ209 with a decrease in cell size and internodes. A genetic analysis revealed that the mutant phenotype was controlled by a single recessive gene, which is designated Lacdwarf1 (Lacd1). Combined with bulked segregate analysis and next-generation sequencing, we quickly mapped a 65.4 kb region on chromosome 5 using F2 segregation population with InDel and SNP polymorphism markers. Gene annotation revealed that Lac05g019500 encodes a gibberellin 3β-hydroxylase (GA3ox) that functions as the most likely candidate gene for Lacd1. DNA sequence analysis showed that there is an approximately 4 kb insertion in the first intron of Lac05g019500 in WJ209. Lac05g019500 is transcribed incorrectly in the dwarf mutant owing to the presence of the insertion. Moreover, the bioactive GAs decreased significantly in WJ209, and the dwarf phenotype could be restored by exogenous GA3 treatment, indicating that WJ209 is a GA-deficient mutant. All these results support the conclusion that Lac05g019500 is the Lacd1 gene. In addition, RNA-Seq revealed that many genes, including those related to plant hormones, cellular process, cell wall, membrane and response to stress, were significantly altered in WJ209 compared with the wild type. This study will aid in the use of molecular marker-assisted breeding in the dwarf sponge gourd.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 196
Author(s):  
Yang Lu ◽  
Shuangxia Luo ◽  
Na Li ◽  
Qiang Li ◽  
Wenchao Du ◽  
...  

Eggplant is a vegetable crop with high economic value that is cultivated worldwide. The dwarf mutant is an important germplasm material that has been extensively used in crop breeding. However, no eggplant dwarf mutants have been reported, and little is known regarding the genes responsible for dwarfism in eggplant. In this study, we isolated an eggplant dwarf mutant (dwf) from an ethyl methyl sulfonate (EMS)-induced mutant library. Genetic analysis revealed that dwf was caused by a single recessive gene. A candidate gene SmCPR1, encoding cytochrome P450 reductases (CPR1), was identified by bulked segregant analysis (BSA). Mutation from G to A at 8216 bp of SmCPR1 resulted in mutation of the amino acid from valine to isoleucine. The results of KASP and Sanger sequencing further support the conclusion that SmCPR1 is a candidate gene responsible for the dwarfism of dwf. Moreover, the activity of SmCPR1 was significantly increased in dwf, which might be a response to dwarfism in dwf.


Horticulturae ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 114
Author(s):  
Yang Lu ◽  
Shuangxia Luo ◽  
Qiang Li ◽  
Na Li ◽  
Wenchao Du ◽  
...  

Dwarfism is a desirable trait in eggplant breeding, as it confers higher lodging resistance and allows simplified management and harvest. However, a few dwarf mutants have been reported, and the molecular mechanism underlying dwarfism in eggplant is completely unknown. Here, we report a dwarf mutant (dwf) isolated from an ethyl methyl sulfonate (EMS)-induced mutant library. The hypocotyl length, plant height, and length of internode cells of dwf were significantly decreased compared to those of the wild-type parent ‘14-345’ (WT). Differential gene expression analysis revealed that GA-related genes, including GA2ox and DELLA, were up-regulated whereas the gibberellin (GA3) content decreased in dwf. Moreover, exogenous GA3 treatment significantly increased the relative growth rate of dwf compared to WT, further indicating the important roles of GA in regulating the dwarf phenotype of dwf. Collectively, our findings shed light on GA-mediated dwarfism in dwf plants and offer a good germplasm that could be used for eggplant dwarfism breeding in the future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhaoxia Sun ◽  
Xinfang Wang ◽  
Ronghua Liu ◽  
Wei Du ◽  
Mingchuan Ma ◽  
...  

AbstractBackgroundTartary buckwheat is an important minor crop species with high nutritional and medicinal value and is widely planted worldwide. Cultivated Tartary buckwheat plants are tall and have hollow stems that lodge easily, which severely affects their yield and hinders the development of the Tartary buckwheat industry.MethodsHeifeng No. 1 seeds were treated with ethylmethanesulfonate (EMS) to generate a mutant library. The dwarf mutantftdmwas selected from the mutagenized population, and the agronomic characteristics giving rise to the dwarf phenotype were evaluated. Ultra-fast liquid chromatography-electrospray ionization tandem mass spectrometry (UFLC-ESI–MS/MS) was performed to determine the factors underlying the different phenotypes between the wild-type (WT) andftdmplants. In addition, RNA sequencing (RNA-seq) was performed via the HiSeq 2000 platform, and the resulting transcriptomic data were analysed to identify differentially expressed genes (DEGs). Single-nucleotide polymorphism (SNP) variant analysis revealed possible sites associated with dwarfism. The expression levels of the potential DEGs between the WT andftdmmutant were then measured via qRT-PCR and fragments per kilobase of transcript per million mapped reads (FPKM).ResultThe plant height (PH) of theftdmmutant decreased to 42% of that of the WT, and compared with the WT, the mutant and had a higher breaking force (BF) and lower lodging index (LI). Lower GA4 and GA7 contents and higher contents of jasmonic acid (JA), salicylic acid (SA) and brassinolactone (BR) were detected in the stems of theftdmmutant compared with the WT. Exogenous application of GAs could not revert the dwarfism of theftdmmutant. On the basis of the transcriptomic analysis, 146 homozygous SNP loci were identified. In total, 12 DEGs with nonsynonymous mutations were ultimately identified, which were considered potential candidate genes related to the dwarf trait. When the sequences of eight genes whose expression was downregulated and four genes whose expression was upregulated were compared, SKIP14, an F-box protein whose sequence is 85% homologous to that of SLY1 in Arabidopsis, presented an amino acid change (from Ser to Asn) and was expressed at a lower level in the stems of theftdmmutant compared with the WT. Hence, we speculated that this amino acid change in SKIP14 resulted in a disruption in GA signal transduction, indirectly decreasing the GA content and downregulating the expression of genes involved in GA biosynthesis or the GA response. Further studies are needed to determine the molecular basis underlying the dwarf phenotype of theftdmmutant.ConclusionWe report a Tartary buckwheat EMS dwarf mutant,ftdm, suitable for high-density planting and commercial farming. A significant decrease in GA4 and GA7 levels was detected in theftdmmutant, and 12 DEGs expressed in the stems of theftdmmutant were selected as candidates of the dwarfing gene. One nonsynonymous mutation was detected in theSKIP14gene in theftdmmutant, and this gene had a lower transcript level compared with that in the WT.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Li ◽  
Fujiang Xiang ◽  
Wei Zhang ◽  
Jindong Yan ◽  
Xinmei Li ◽  
...  

Abstract Background Plant height is an important plant characteristic closely related to yield performance of many crops. Reasonable reduction of plant height of crops is beneficial for improving yield and enhancing lodging resistance. Results In the present study, we described the Brassica napus dwarf mutant bnd2 that was isolated using ethyl methanesulfonate (EMS) mutagenesis. Compared to wild type (WT), bnd2 exhibited reduced height and shorter hypocotyl and petiole leaves. By crossing the bnd2 mutant with the WT strain, we found that the ratio of the mutant to the WT in the F2 population was close to 1:3, indicating that bnd2 is a recessive mutation of a single locus. Following bulked segregant analysis (BSA) by resequencing, BND2 was found to be located in the 13.77–18.08 Mb interval of chromosome A08, with a length of 4.31 Mb. After fine mapping with single nucleotide polymorphism (SNP) and insertion/deletion (InDel) markers, the gene was narrowed to a 140-Kb interval ranging from 15.62 Mb to 15.76 Mb. According to reference genome annotation, there were 27 genes in the interval, of which BnaA08g20960D had an SNP type variation in the intron between the mutant and its parent, which may be the candidate gene corresponding to BND2. The hybrid line derived from a cross between the mutant bnd2 and the commercial cultivar L329 had similar plant height but higher grain yield compared to the commercial cultivar, suggesting that the allele bnd2 is beneficial for hybrid breeding of lodging resistant and high yield rapeseed. Conclusion In this study, we identified a novel dwarf mutant of rapeseed with a new locus, which may be useful for functional analyses of genetic mechanisms of plant architecture and grain yield in rapeseed.


2021 ◽  
Vol 78 (2) ◽  
pp. 169-174
Author(s):  
Swati Saha ◽  
K. Chandrashekar ◽  
Raj Verma ◽  
Savarni Tripathi

Sign in / Sign up

Export Citation Format

Share Document