scholarly journals Articular cartilage gene expression patterns in the tissue surrounding the impact site following applications of shear and axial loads

2018 ◽  
Vol 19 (1) ◽  
Author(s):  
R. S. McCulloch ◽  
P. L. Mente ◽  
A. T. O’Nan ◽  
M. S. Ashwell
Author(s):  
Michael V. Lombardo ◽  
Elena Maria Busuoli ◽  
Laura Schreibman ◽  
Aubyn C. Stahmer ◽  
Tiziano Pramparo ◽  
...  

AbstractEarly detection and intervention are believed to be key to facilitating better outcomes in children with autism, yet the impact of age at treatment start on the outcome is poorly understood. While clinical traits such as language ability have been shown to predict treatment outcome, whether or not and how information at the genomic level can predict treatment outcome is unknown. Leveraging a cohort of toddlers with autism who all received the same standardized intervention at a very young age and provided a blood sample, here we find that very early treatment engagement (i.e., <24 months) leads to greater gains while controlling for time in treatment. Pre-treatment clinical behavioral measures predict 21% of the variance in the rate of skill growth during early intervention. Pre-treatment blood leukocyte gene expression patterns also predict the rate of skill growth, accounting for 13% of the variance in treatment slopes. Results indicated that 295 genes can be prioritized as driving this effect. These treatment-relevant genes highly interact at the protein level, are enriched for differentially histone acetylated genes in autism postmortem cortical tissue, and are normatively highly expressed in a variety of subcortical and cortical areas important for social communication and language development. This work suggests that pre-treatment biological and clinical behavioral characteristics are important for predicting developmental change in the context of early intervention and that individualized pre-treatment biology related to histone acetylation may be key.


2021 ◽  
Author(s):  
Graham L. Cromar ◽  
Jonathan Epp ◽  
Ana Popovic ◽  
Yusing Gu ◽  
Violet Ha ◽  
...  

ABSTRACTToxoplasma gondii is a single celled parasite thought to infect 1 in 3 worldwide. During chronic infection, T. gondii can migrate to the brain where it promotes low-grade neuroinflammation with the capacity to induce changes in brain morphology and behavior. Consequently, infection with T. gondii has been linked with a number of neurocognitive disorders including schizophrenia (SZ), dementia, and Parkinson’s disease. Beyond neuroinflammation, infection with T. gondii can modulate the production of neurotransmitters, such as dopamine. To further dissect these pathways and examine the impact of altered dopaminergic sensitivity in T. gondii-infected mice on both behavior and gene expression, we developed a novel mouse model, based on stimulant-induced (cocaine) hyperactivity. Employing this model, we found that infection with T. gondii did not alter fear behavior but did impact motor activity and neuropsychiatric-related behaviurs. While both behaviors may help reduce predator avoidance, consistent with previous studies, the latter finding is reminiscent of neurocognitive disorders. Applying RNASeq to two relevant brain regions, striatum and hippocampus, we identified a broad upregulation of immune responses. However, we also noted significant associations with more meaningful neurologically relevant terms were masked due to the sheer number of terms incorporated in multiple testing correction. We therefore performed a more focused analysis using a curated set of neurologically relevant terms revealing significant associations across multiple pathways. We also found that T. gondii and cocaine treatments impacted the expression of similar functional pathways in the hippocampus and striatum although, as indicated by the low overlap among differentially expressed genes, largely via different proteins. Furthermore, while most differentially expressed genes reacted to a single condition and were mostly upregulated, we identified gene expression patterns indicating unexpected interactions between T. gondii infection and cocaine exposure. These include sets of genes which responded to cocaine exposure but not upon cocaine exposure in the context of T. gondii infection, suggestive of a neuroprotective effect advantageous to parasite persistence. Given its ability to uncover such complex relationships, we propose this novel model offers a new perspective to dissect the molecular pathways by which T. gondii infection contributes to neuropsychiatric disorders such as schizophrenia.


2004 ◽  
Vol 36 (8) ◽  
pp. 1043-1057 ◽  
Author(s):  
Cheol-Koo Lee ◽  
Thomas D Pugh ◽  
Roger G Klopp ◽  
Jode Edwards ◽  
David B Allison ◽  
...  

2011 ◽  
Vol 30 (2) ◽  
pp. 234-245 ◽  
Author(s):  
Tiffany Cheng ◽  
Nicole C. Maddox ◽  
Andrew W. Wong ◽  
Ruyan Rahnama ◽  
Alfred C. Kuo

2020 ◽  
Author(s):  
Michael V. Lombardo ◽  
Elena Maria Busuoli ◽  
Laura Schreibman ◽  
Aubyn C. Stahmer ◽  
Tiziano Pramparo ◽  
...  

AbstractEarly detection and intervention are believed to be key to facilitating better outcomes in children with autism, yet the impact of age at treatment start on outcome is poorly understood. While clinical traits such as language ability have been shown to predict treatment outcome, whether or not and how information at the genomic level can predict treatment outcome is unknown. Leveraging a cohort of toddlers with autism who all received the same standardized intervention at a very young age and provided a blood sample, here we find that very early treatment engagement (i.e., < 24 months) leads to greater gains while controlling for time in treatment. Pre-treatment clinical behavioral measures predicts 21% of the variance in the rate of skill growth during early intervention. Pre-treatment blood leukocyte gene expression patterns also predicts rate of skill growth, accounting for 13% of the variance treatment slopes. Results indicated that 295 genes can be prioritized as driving this effect. These treatment-relevant genes highly interact at the protein level, are enriched for differentially histone acetylated genes in autism post-mortem cortical tissue, and are normatively highly expressed in variety of subcortical and cortical areas important for social-communication and language development. This work indicates for the first time that gene expression can predict the rate of early intervention response and that a key biological factor linked to treatment outcome could be the susceptibility for epigenetic change via mechanisms such as histone acetylation.


2021 ◽  
Author(s):  
Meng-Ying Lin ◽  
Urte Schlueter ◽  
Benjamin Stich ◽  
Andreas P.M. Weber

Altered transcript abundances and cell specific gene expression patterns that are caused by regulatory divergence play an important role in the evolution of C4 photosynthesis. How these altered gene expression patterns are achieved and whether they are driven by cis- or trans-regulatory changes is mostly unknown. To address this question, we investigated the regulatory divergence between C3 and C3-C4 intermediates, using allele specific gene expression (ASE) analyses of Moricandia arvensis (C3-C4), M. moricandioides (C3) and their interspecific F1 hybrids. ASE analysis on SNP-level showed similar relative proportions of regulatory effects among hybrids: 36% and 6% of SNPs were controlled by cis-only and trans-only changes, respectively. GO terms associated with metabolic processes and the positioning of chloroplast in cells were abundant in transcripts with cis-SNPs shared by all studied hybrids. Transcripts with cis-specificity expressed bias toward the allele from the C3-C4 intermediate genotype. Additionally, ASE evaluated on transcript-level indicated that ~27% of transcripts show signals of ASE in Moricandia hybrids. Promoter-GUS assays on selected genes revealed altered spatial gene expression patterns, which likely result from regulatory divergence in their promoter regions. Assessing ASE in Moricandia interspecific hybrids contributes to the understanding of early evolutionary steps towards C4 photosynthesis and highlights the impact and importance of altered transcriptional regulations in this process.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yijiang Huang ◽  
Daniel Seitz ◽  
Yan Chevalier ◽  
Peter E. Müller ◽  
Volkmar Jansson ◽  
...  

Abstract Background Human TGF-β3 has been used in many studies to induce genes coding for typical cartilage matrix components and accelerate chondrogenic differentiation, making it the standard constituent in most cultivation media used for the assessment of chondrogenesis associated with various stem cell types on carrier matrices. However, in vivo data suggests that TGF-β3 and its other isoforms also induce endochondral and intramembranous osteogenesis in non-primate species to other mammals. Based on previously demonstrated improved articular cartilage induction by a using hTGF-β3 and hBMP-6 together on hADSC cultures and the interaction of TGF- β with matrix in vivo, the present study investigates the interaction of a chitosan scaffold as polyanionic polysaccharide with both growth factors. The study analyzes the difference between chondrogenic differentiation that leads to stable hyaline cartilage and the endochondral ossification route that ends in hypertrophy by extending the usual panel of investigated gene expression and stringent employment of quantitative PCR. Results By assessing the viability, proliferation, matrix formation and gene expression patterns it is shown that hTGF-β3 + hBMP-6 promotes improved hyaline articular cartilage formation in a chitosan scaffold in which ACAN with Col2A1 and not Col1A1 nor Col10A1 where highly expressed both at a transcriptional and translational level. Inversely, hTGF-β3 alone tended towards endochondral bone formation showing according protein and gene expression patterns. Conclusion These findings demonstrate that clinical therapies should consider using hTGF-β3 + hBMP-6 in articular cartilage regeneration therapies as the synergistic interaction of these morphogens seems to ensure and maintain proper hyaline articular cartilage matrix formation counteracting degeneration to fibrous tissue or ossification. These effects are produced by interaction of the growth factors with the polysaccharide matrix.


Author(s):  
Baojin Yao ◽  
Zhenwei Zhou ◽  
Mei Zhang ◽  
Xiangyang Leng ◽  
Daqing Zhao

Sign in / Sign up

Export Citation Format

Share Document