scholarly journals Comparison of anterior and posterior trabecular bone microstructure of human mandible using cone-beam CT and micro CT

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Norliza Ibrahim ◽  
Azin Parsa ◽  
Bassam Hassan ◽  
Paul van der Stelt ◽  
Rabiah A. Rahmat ◽  
...  

Abstract Background The aim of this study was to compare the trabecular bone microstructures of anterior and posterior edentulous regions of human mandible using cone-beam computed tomography (CBCT) and micro computed tomography (µCT). Methods Twenty volumes of interests consisting of six anterior and fourteen posterior edentulous regions were obtained from human mandibular cadavers. A CBCT system with a resolution of 80 µm (3D Accuitomo 170, J. Morita, Kyoto, Japan) and a µCT system with a resolution of 35 µm (SkyScan 1173, Kontich, Belgium) were used to scan the mandibles. Three structural parameters namely, trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) were analysed using CTAn software (v 1.11, SkyScan, Kontich, Belgium). For each system, the measurements obtained from anterior and posterior regions were tested using independent sample t-test. Subsequently, all measurements between systems were tested using paired t-test. Results In CBCT, all parameters of the anterior and posterior mandible showed no significant differences (p > 0.05). However, µCT showed a significant different of Tb.Th (p = 0.023) between anterior and posterior region. Regardless of regions, the measurements obtained using both imaging systems were significantly different (p ≤ 0.021) for Tb.Th and Tb.N. Conclusions The current study demonstrated that only the variation of Tb.Th between anterior and posterior edentulous region of mandible can be detected using µCT. In addition, CBCT is less feasible than µCT in assessing trabecular bone microstructures at both regions.

2020 ◽  
Author(s):  
Norliza Ibrahim ◽  
Azin Parsa ◽  
Bassam Hassan ◽  
Paul der Stelt ◽  
Siti Mazlipah Ismail ◽  
...  

Abstract Objective The aim of this study was to compare the trabecular bone microstructures of anterior and posterior edentulous regions of human mandible using cone-beam CT (CBCT) and micro CT (µCT).Materials and methods Twenty volumes of interests consisting of six anterior and fourteen posterior edentulous regions were obtained from human mandibular cadavers. A CBCT system with a resolution of 80 µm (3D Accuitomo 170, J. Morita, Kyoto, Japan) and a µCT system with a resolution of 35 µm (SkyScan 1173, Kontich, Belgium) were used to scan the mandibles. Three structural parameters namely, trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) were analysed using CTAn software (v 1.11, SkyScan, Kontich, Belgium). For each system, the measurements obtained from anterior and posterior regions were tested using independent sample t-test. Subsequently, all measurements between systems were tested using paired t-test.Results In CBCT, all parameters of the anterior and posterior mandible showed no significant differences (p > 0.05). However, µCT showed a significant different of Tb.Th (p = 0.023) between anterior and posterior region. Regardless of regions, the measurements obtained using both imaging systems were significantly different (p ≤ 0.021) for Tb.Th and Tb.N.Conclusions The current study demonstrated that only the variation of Tb.Th between anterior and posterior edentulous region of mandible can be detected using micro CT. In addition, CBCT is less feasible than micro CT in assessing trabecular bone microstructures at both regions.


2022 ◽  
Vol 12 (2) ◽  
pp. 316-322
Author(s):  
Meng-Sheng Song ◽  
Xiao Yu ◽  
Peng-Ze Rong ◽  
Qing-Jiang Pang

Objectives: To compare the effects of signaling-selective parathyroid hormone analogs [G1, R19]hPTH(1–28) [GR(1–28)] and [G1, R19]hPTH(1–34) [GR(1–34)] on osteoporotic osteocyte apoptosis, and to explore the mechanism of the anti-osteoporotic difference. Methods: The osteoporosis model was established in eighty adult female C57BL/6 mice aged 12 weeks. The mice were subcutaneously administered with GR(1–28) and GR(1–34) 5 days per week for 8 weeks. Bilateral femur samples were collected at 4 and 8 weeks, and micro-computed tomography (CT), H&E staining and immunohistochemical staining analyses were performed. Results: From micro-CT analysis, GR(1–34) increased proximal femoral bone mineral density (BMD) and relative bone volume (BV/TV), which was higher than GR(1–28) did. In addition, more trabecular number (Tb.N), thinner trabecular thickness (Tb.Th) and wider trabecular separation (Tb.Sp) were measured at week 8 using GR(1–34). From H&E and immunohistochemical staining, a stronger apoptosis inhibition was induced by GR(1–34) with more Bcl-2 secretion but less Bax expression, as opposed to GR(1–28). Conclusions: GR(1–34) shows better anti-osteoporotic effects than GR(1–28), which appears to be attributed to the activation of the PLC-independent PKC signaling pathway triggered by the former, inhibiting osteocyte apoptosis through up-regulation of Bcl-2 and down-regulation of Bax to increase bone mass and improving trabecular bone microstructure to enhance bone quality by reducing trabecular number, increasing trabecular thickness and trabecular space.


2021 ◽  
Vol 15 (1) ◽  
pp. 57-63
Author(s):  
Lauren Bohner ◽  
Pedro Tortamano ◽  
Felix Gremse ◽  
Israel Chilvarquer ◽  
Johannes Kleinheinz ◽  
...  

Background: Cone-Beam Computed Tomography (CBCT) with high-resolution parameters may provide an acceptable resolution for bone assessment. Objectives: The purpose of this study is to assess trabecular bone using two cone-beam computed tomography (CBCT) devices with high-resolution parameters in comparison to micro-computed tomography (µCT). Methods: Bone samples (n=8) were acquired from dry mandibles and scanned by two CBCT devices: 1) VV (Veraview R100, Morita; FOV 4x4, 75kV, 9mA, voxel size 0.125µm); and PR (Prexion 3D, Prexion; FOV 5x5, 90kV, 4mA, 37s, voxel size 108µm). Gold-standard images were acquired using µCT (SkyScan 1272; Bruker; 80kV, 125mA, voxel size 16µm). Morphometric parameters (BvTv- Bone Volume Fraction, BsBv- Trabecular specific surface, TbTh- Trabecular thickness and TbSp- Trabecular separation) were measured. Statistical analysis was performed within ANOVA, Spearman Correlation test and Bland-Altmann plots with a statistical significance level at p=0.05. Results: CBCT devices showed similar BvTv values in comparison to µCT. No statistical difference was found for BvTv parameters assessed by CBCT devices and µCT. BsBv values were underestimated by CBCT devices (p<0.01), whereas TbTh and TbSp values were overestimated by them (p<0.01). Positive correlations were found between VV and µCT measurements for BvTv (r2= 0.65, p=0.00), such as between PR and µCT measurements for TbSp (r2= 0.50, p=0.04). For BsBv measurements, PR was negatively correlated with µCT (r2= -0.643, p=0.01). Conclusion: The evaluated CBCT device was able to assess trabecular bone. However, bone parameters were under or overestimated in comparison to µCT.


2017 ◽  
Vol 25 (1) ◽  
pp. 230949901769271 ◽  
Author(s):  
Fırat Ozan ◽  
Mahmut Pekedis ◽  
Şemmi Koyuncu ◽  
Taşkın Altay ◽  
Hasan Yıldız ◽  
...  

Purpose: Osteopenia and osteoporosis are the two most common musculoskeletal disorders in the elderly population. We determined whether osteopenic and osteoporotic patients with fractures exhibit differences in trabecular morphology and biomechanical properties of bone. Methods: Fourteen osteopenic patients and 28 osteoporotic patients with hip fractures who underwent hemiarthroplasty for proximal femoral fractures caused by low-energy injury were included. Bone mineral density (BMD) measurements were performed. Compression tests and high-resolution micro-computed tomography were used to assess cancellous bone samples obtained from the principal compressive region of the femoral head. Results: The BMD values were lower in the osteoporotic patients than in the osteopenic patients ( p < 0.05). There was a significant difference in the yield stress values between the groups ( p < 0.05). However, no significant differences in the strain energy density, stiffness and Young’s modulus were observed between the groups ( p > 0.05). The mean maximum stress was significantly higher in the osteoporotic patients than in the osteopenic patients ( p < 0.05). Although structural parameters, including bone volume (BV), BV fraction, trabecular thickness, trabecular connectivity density and trabecular number, were higher in the osteopenic patients, the differences were not significant ( p > 0.05). Trabecular separation values were significantly higher in the osteoporotic patients ( p < 0.05). Conclusion: Our results showed that the trabecular morphology and biomechanical properties of bone were not significantly different between osteopenic and osteoporotic patients in terms of some parameters.


Diagnostics ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 368
Author(s):  
Ming-Tzu Tsai ◽  
Rong-Ting He ◽  
Heng-Li Huang ◽  
Ming-Gene Tu ◽  
Jui-Ting Hsu

Assessing bone quality and quantity at the location of dental implants before dental implantation is crucial. In recent years, dental cone-beam computed tomography (dental CBCT) has often been used to assess bone quality and quantity prior to dental implant. However, the effect of scanning resolution on the prediction of trabecular bone microarchitectural parameters (TBMPs) remains unclear. The objective of this study was to examine how dental CBCT with various scanning resolution differs with regard to predicting TBMPs. This study used micro-computed tomography (micro-CT) with 18 μm resolution and dental CBCT with 100 μm and 150 μm resolutions on 28 fresh bovine vertebrae cancellous bone specimens. Subsequently, all images were input into the ImageJ software to measure four TBMPs: bone volume total volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp). One-way analysis of variance and Tukey’s test were subsequently used to assess the differences between three scanning modes for the four TBMPs. In addition, correlations between measurement results obtained from micro-CT and dental CBCT with two resolutions were measured. The experimental results indicated that significant differences in four TBMPs were observed between micro-CT and dental CBCT (p < 0.05). The correlation coefficients between BV/TV, Tb.N, and Tb.Sp obtained from micro-CT and from dental CBCT with 100 μm resolution (0.840, 0.739, and 0.820, respectively) were greater than the correlation coefficients between BV/TV, Tb.N, and Tb.Sp obtained from micro-CT and from dental CBCT with 150 μm resolution (0.758, 0.367, and 0.724, respectively). The experimental results revealed that the TBMPs measured with dental CBCT with two resolutions differed from ideal values, but a higher resolution could provide more accurate prediction results, particularly for BV/TV, Tb.N, and Tb.Sp.


Sign in / Sign up

Export Citation Format

Share Document