scholarly journals Quercetin promotes bone marrow mesenchymal stem cell proliferation and osteogenic differentiation through the H19/miR-625-5p axis to activate the Wnt/β-catenin pathway

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Bian ◽  
Shunqiang Xiao ◽  
Lei Yang ◽  
Jun Chen ◽  
Shifang Deng

Abstract Background Quercetin and H19 can promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). However, whether quercetin regulates H19 expression to promote osteogenic differentiation of BMSCs is unclear. Methods BMSC proliferation, matrix mineralization, and alkaline phosphatase (ALP) activity were assessed using the Cell Counting Kit-8, ALP assay kit, and alizarin red staining kit, respectively. Expression of H19, miR-625-5p, BMP-2, osteocalcin, and RUNX2 were measured by qRT-PCR; β-catenin protein level was measured by western blotting. Results Quercetin promoted BMSC proliferation, enhanced ALP activity, and upregulated the expression of BMP-2, osteocalcin, and RUNX2 mRNAs, suggesting that it promoted osteogenic differentiation of BMSCs. Moreover, quercetin increased H19 expression, while the effect of quercetin on BMSCs was reversed by silencing H19 expression. Additionally, miR-625-5p, interacted with H19, was downregulated during quercetin-induced BMSC osteogenic differentiation, which negatively correlated with H19 expression. Silencing miR-625-5p expression promoted BMSC proliferation and osteogenic differentiation, whereas miR-625-5p overexpression weakened the effect of quercetin on BMSCs. Finally, quercetin treatment or downregulation of miR-625-5p expression increased β-catenin protein level in BMSCs. Upregulation or downregulation of miR-625-5p or H19 expression, respectively, inhibited β-catenin protein level in quercetin treated-BMSCs. Conclusion H19 promotes, while miR-625-5p inhibits BMSC osteogenic differentiation. Quercetin activates the Wnt/β-catenin pathway and promotes BMSC osteogenic differentiation via the H19/miR-625-5p axis.

2021 ◽  
Author(s):  
Gaoying Ran ◽  
Wei Fang ◽  
Lifang Zhang ◽  
Yuting Peng ◽  
Jiatong Li ◽  
...  

Objectives: Insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein 2 (BMP-2) both promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs). IGF-1C, the C domain peptide of IGF-1, and P24, a BMP-2-derived peptide, both have similar biological activities as their parent growth factors. This study aimed to investigate the effects and their mechanisms of polypeptides IGF-1C and P24 on the osteogenic differentiation of BMSCs. Methods: The optimum concentrations of IGF-IC and P24 were explored. The effects of the two polypeptides on the proliferation and osteogenic differentiation of BMSCs were examined using the Cell Counting Kit-8 (CCK-8), Alkaline phosphatase (ALP) staining, ALP activity assay, alizarin red S staining, qPCR, and western blotting. In addition, specific pathway inhibitors were utilized to explore whether p38 and JNK pathways were involved in this process. Results: The optimal concentrations of action were both 50 g/ml. IGF-1C and P24 synergistically promoted the proliferation of BMSCs, increased ALP activity and the formation of calcified nodules and upregulated the mRNA and protein levels of osterix (Osx), runt-related transcription factor 2 (Runx2), and osteocalcin (Ocn), phosphorylation level of p38 and JNK proteins also improved. Inhibition of the pathways significantly reduced the activation of p38 and JNK, blocked the expression of Runx2 while inhibiting ALP activity and the formation of calcified nodules. Conclusions: These findings suggest IGF-1C and P24 synergistically promote the osteogenesis of BMSCs through activation of p38 and JNK signal pathways.


2022 ◽  
Vol 12 (4) ◽  
pp. 794-799
Author(s):  
Le Chang ◽  
Wei Duan ◽  
Chuang Wang ◽  
Jian Zhang

This study was to determine whether microRNA (miRNA)-126 regulates osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Rat BMSCs were extracted and stimulated for osteogenic differentiation. Functional experiments were conducted to assess miR-126’s impact on BMSCs differentiation. Western blot and RT-qPCR determined miR-126 expression. ALP activity detection and alizarin red staining detection were also performed. After osteogenic differentiation of BMSCs, miR-126 expression was gradually decreased over time. Overexpression of miR-26 decreased ALP activity, Notch signaling activity as well as declined Runx2 expression and calcium Salt nodules after treatment. Importantly, we found that Smad4 serves as a target of miR-126 while upregulation of the miRNA was accompanied with the decreased Smad4 protein expression without affecting the Smad4 mRNA level. In conclusion, miR-126 restrains osteogenic differentiation through inhibition of SMAD4 signaling, providing a novel insight into the mechanism.


2020 ◽  
Author(s):  
Shuting Jiang ◽  
Hongyan Liu ◽  
Weiyan Zhu ◽  
Hui Yan ◽  
Beizhan Yan

Abstract Background Mesenchymal stem cells transplantation gradually become a potential treatment for bone defect in clinic practice. This study aimed to investigate the molecular mechanism of PRP and autophagy for osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). Methods Thrombin activated PRP was prepared and the BMSCs were treated with activated PRP with different concentration and transfected with miR-140-3p vector (mimics or inhibitor), si-SPRED2 or co-transfected with miR-140-3p inhibitor and si-SPRED2, respectively. qRT-PCR and Western blotting were used to determine the mRNA expression and protein expression. A luciferase reporter assay was conducted to identified the targeting relationship between iR-140-3p and SPRED2 Subsequently, cell proliferation was detected by MTT and ALP activity was also determined. Alizarin red staining was used for the evaluating the formation of calcium nodules. Results MiR-140-3p expression was found to be inhibited by PRP in a dose-dependent manner, besides, cell proliferation, ALP activity, the expression of COL-I, OPN, Runx2 and OCN, and the formation of calcium nodules related to osteogenic differentiation were enhanced by PRP. Subsequently, we found that PRP activated autophagy and up-regulated SPRED2 expression in BMSCs through suppressing miR-140-3p expression. Moreover, we confirmed that miR-140-3p targeted SPRED2 and negatively regulation its expression. Finally, the findings showed that inhibition of miR-140-3p enhanced cell proliferation, osteogenic differentiation and autophagy of BMSCs by negatively regulating SPRED2 expression. Conclusion Thrombin activated PRP accelerated osteogenic differentiation of BMSCs by activing autophagy through miR-140-3p/SPRED2 axis.


2019 ◽  
Vol 9 (12) ◽  
pp. 1739-1744
Author(s):  
Mingyong Gu ◽  
Runquan Zheng

Bone marrow mesenchymal stem cells (BMSCs) can differentiate into adipocytes, osteoblasts. Apolipoprotein E (ApoE) is closely related to bone metabolism and its effect on bone marrow mesenchymal stem cells is unclear. Therefore, this study investigated ApoE's effect on BMSCs osteogenic differentiation. BMSCs were isolated from ApoE – and WT mouse and cultured to induce osteogenic induction followed by analysis of expression of osteogenic differentiation marker genes by Real-time PCR, calcium nodules formation by ARS staining, ALP activity and -catenin protein level by Western blot. The number of bone differentiation markers, ALP activity and calcium nodules formation as well as β-catenin protein level in ApoE– group were significantly elevated compared with WT (P < 0 05). After treatment with DKK-1, β-catenin expression was significantly reduced (P < 0 05) without difference between ApoE– + DKK-1 group and WT group (P > 0 05). WT+ DKK1 group showed significantly reduced osteogenic differentiation marker expression, ALP activity and calcium nodule number compared to WT (P < 0 05) without difference between ApoE– + DKK1 group and WT group (P > 0 05). ApoE inhibits BMSCs osteogenic differentiation by inhibiting β-catenin expression.


2021 ◽  
Author(s):  
Ziyue Qin ◽  
Shu Hua ◽  
Huifen Chen ◽  
Zhuo Wang ◽  
Haoran Wang ◽  
...  

Periodontitis is a series of inflammatory processes caused by bacterial infection. Parathyroid hormone (PTH) plays a critical role in bone remodeling. This study aimed to investigate the influences of PTH on human bone marrow mesenchymal stem cells (HBMSCs) pretreated with lipopolysaccharide (LPS). The proliferative ability was measured using cell counting kit-8 and flow cytometry. The optimal concentrations of PTH and LPS were determined using alkaline phosphatase (ALP) activity assay, ALP staining, and Alizarin red staining. Osteogenic differentiation was further assessed by quantitative reverse transcription–polymerase chain reaction, Western blot analysis, and immunofluorescence staining. PTH had no effects on the proliferation of HBMSCs. Also, 100 ng/mL LPS significantly inhibited HBMSC osteogenesis, while 10−9 mol/L PTH was considered as the optimal concentration to reverse the adverse effects. Mechanistically, c-Jun N-terminal kinase (JNK) phosphorylation was activated by PTH in LPS-induced HBMSCs. SP600125, a selective inhibitor targeting JNK mitogen-activated protein kinase (MAPK) signaling, weakened the effects of PTH. Taken together, the findings revealed the role and mechanism of PTH and JNK pathway in promoting the osteogenic differentiation of LPS-induced HBMSCs, which offered an alternative for treating periodontal diseases.


2020 ◽  
Vol 10 (12) ◽  
pp. 1865-1870
Author(s):  
Yang Ying ◽  
Binghao Zhao ◽  
Wei Qian ◽  
Li Xu

Bone marrow mesenchymal stem cells (BMSCs) have self-renewal potential with multi-directional differentiation. Progranulin prevents bone degradation, inhibits inflammation and protects bone tissue. However, the role of Progranulin in osteoporotic BMSCs is unclear. Osteoporosis (OP) rat models were prepared by ovarian removal and treated with different doses (5 and 10 μM) of Progranulin followed by analysis of BMP-2 level by ELISA, bone mineral density and ALP activity. OP rat BMSCs were isolated and assigned into control group and Progranulin group followed by analysis of Progranulin level by ELISA, cell proliferation by MTT assay, RUNX2 and COL1A1 mRNA level by Real time PCR, and PI3K/Akt/PPARγ signaling protein level by Western blot. Progranulin treatment of OP rats dose-dependently increased BMP-2 expression, bone density and ALP activity. Compared with OP group, there were significant differences (P <0.05). Progranulin expression and BMSCs proliferation was increased, and RUNX2 and COL1A1 mRNA expression was elevated in Progranulin-treated OP group along with increased PI3K/Akt expression and decreased PPARγ protein expression. Compared with OP group, the difference was statistically significant, and the change was more significant with increasing concentration (P <0.05). Progranulin promotes BMSCs osteogenic differentiation and proliferation by regulating PI3K/Akt/PPARγ signaling pathway, which is beneficial for OP rats’ bone synthesis.


2021 ◽  
Vol 11 (5) ◽  
pp. 957-962
Author(s):  
Ainiwaerjiang Damaola ◽  
Maerdan Aierken ◽  
Mieralimu Muertizha ◽  
Abudouaini Abudoureheman ◽  
Haishan Lin ◽  
...  

We aimed to explore the effects of rat bone marrow mesenchymal stem cells (BMSCs) on osteogenic differentiation via analyzing miR-3148 expression in patients with osteoporosis. Realtime quantitative PCR was conducted for assessing microRNA-3148 expression. BMSCs from SD rats were transfected with microRNA-3148 mimics and microRNA-3148 inhibitor via liposomal trans-fection method utilizing Lipo2000, followed by analysis of microRNA-3148 level. After 10-days of osteogenic differentiation induction, alkaline phosphatase (ALP) staining and alizarin red (ARS) staining were done to investigate the osteogenic differentiation potential. Simultaneously, qRT-PCR measured the expression of osteogenesis marker genes (BMP and Runx2) in each group. qRT-PCR analysis revealed a high expression of miR-3148 in the bone tissue and the serum samples from patients with osteoporosis in comparison with healthy individuals. In addition, miRNA-3148 mimics could retard the osteogenic differentiation of BMSCs, while microRNA-3148 inhibitor could prompt the procedure. MicroRNA-3148 was highly expressed in the skeletal tissues and the serum samples from patients with osteoporosis and it could restrain the differentiation of BMSCs into osteoblasts, suggesting that it might be a novel therapeutic target for treating osteoporosis.


Biology ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 370
Author(s):  
Alessio Rochira ◽  
Luisa Siculella ◽  
Fabrizio Damiano ◽  
Andrea Palermo ◽  
Franco Ferrante ◽  
...  

Bone regeneration is a complex process regulated by several factors that control overlapping biological processes, coordinating interactions among distinct cell populations. There is a great interest in identifying new strategies for inducing osteogenesis in a safe and efficient manner. Concentrated Growth Factor (CGF) is an autologous blood derived product obtained by centrifugation of venous blood following the procedure set on the Silfradent device. In this study the effects of CGF on osteogenic differentiation of human Bone Marrow Stem Cells (hBMSC) in vitro have been investigated; hBMSC were cultured with CGF or osteogenic medium, for 21 days. The osteogenic differentiation was evaluated measuring alkaline phosphatase (ALP) enzyme activity, matrix mineralization by alizarin red staining and through mRNA and protein quantification of osteogenic differentiation markers by Real-time PCR and Western blotting, respectively. The treatment with CGF stimulated ALP activity and promoted matrix mineralization compared to control and seems to be more effective than osteogenic medium. Also, hBMSC lost mesenchymal markers and showed other osteogenic features. Our study showed for the first time that CGF alone is able to induce osteogenic differentiation in hBMSC. The application of CGF on hBMSC osteoinduction might offer new clinical and biotechnological strategies in the tissue regeneration field.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yicai Zhang ◽  
Yi Sun ◽  
Jinlong Liu ◽  
Yu Han ◽  
Jinglong Yan

The molecular mechanisms how bone marrow-derived mesenchymal stem cells (BMSCs) differentiate into osteoblast need to be investigated. MicroRNAs (miRNAs) contribute to the osteogenic differentiation of BMSCs. However, the effect of miR-346-5p on osteogenic differentiation of BMSCs is not clear. This study is aimed at elucidating the underlying mechanism by which miR-346-5p regulates osteogenic differentiation of human BMSCs. Results of alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining indicated that upregulation of miR-346-5p suppressed osteogenic differentiation of BMSCs, whereas downregulation of miR-346-5p enhanced this process. The protein levels of the osteoblastic markers Osterix and Runt-related transcription factor 2 (Runx2) were decreased in cells treated with miR-346-5p mimic at day 7 and day 14 after being differentiated. By contrast, downregulation of miR-346-5p elevated the protein levels of Osterix and Runx2. Moreover, a dual-luciferase reporter assay revealed that Transmembrane Protein 9 (TMEM9) was a target of miR-346-5p. In addition, the Western Blot results demonstrated that the TMEM9 protein level was significantly reduced by the miR-346-5p mimic whereas downregulation of miR-346-5p improved the protein level of TMEM9. These results together demonstrated that miR-346-5p served a key role in BMSC osteogenic differentiation of through targeting TMEM9, which may provide a novel target for clinical treatments of bone injury.


2020 ◽  
Vol 10 (6) ◽  
pp. 868-873
Author(s):  
Shengxiang Huang ◽  
Haibo Mei ◽  
Rongguo He ◽  
Kun Liu ◽  
Jin Tang ◽  
...  

The α-calcitonin gene-related peptide (α-CGRP) regulates bone metabolism and has potential applications in enhancing bone remodeling in vivo. However, α-CGRP's role in bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation remain unclear. Rat BMSCs were separated into control group, α-CGRP group and α-CGRP siRNA group, in which BMSCs were transfected with α-CGRP plasmid and α-CGRP siRNA respectively followed by analysis of α-CGRP level by real time PCR and ELISA, cell proliferation by MTT assay, Caspase 3 activity, ALP activity, formation of calcified nodules by alizarin red staining, Smad1 and Smad7 level by Western blot and Runx2 by real time PCR. αCGRP transfection into BMSCs significantly up-regulated CGRP, which could promote cell proliferation, inhibit Caspase 3 activity, promote ALP activity, increase calcified nodules formation and upregulate Smad1, Smad7 and Runx2 compared to control (P < 0.05); transfection of αCGRP siRNA significantly down-regulated CGRP in BMSCs, inhibited cell proliferation, promoted Caspase 3 activity, inhibited ALP activity, inhibited calcified nodules formation and downregulate Smad1, Smad7 and Runx2 (P < 0.05). αCGRP overexpression promotes the Smad/Runx2 signaling, which in turn promotes BMSCs proliferation and osteogenesis. Decreased αCGRP level inhibits Smad/Runx2 signaling, promotes BMSCs apoptosis, inhibits proliferation and osteogenic differentiation.


Sign in / Sign up

Export Citation Format

Share Document