scholarly journals A low-cost vision system based on the analysis of motor features for recognition and severity rating of Parkinson’s Disease

Author(s):  
Domenico Buongiorno ◽  
Ilaria Bortone ◽  
Giacomo Donato Cascarano ◽  
Gianpaolo Francesco Trotta ◽  
Antonio Brunetti ◽  
...  

Abstract Background Assessment and rating of Parkinson’s Disease (PD) are commonly based on the medical observation of several clinical manifestations, including the analysis of motor activities. In particular, medical specialists refer to the MDS-UPDRS (Movement Disorder Society – sponsored revision of Unified Parkinson’s Disease Rating Scale) that is the most widely used clinical scale for PD rating. However, clinical scales rely on the observation of some subtle motor phenomena that are either difficult to capture with human eyes or could be misclassified. This limitation motivated several researchers to develop intelligent systems based on machine learning algorithms able to automatically recognize the PD. Nevertheless, most of the previous studies investigated the classification between healthy subjects and PD patients without considering the automatic rating of different levels of severity. Methods In this context, we implemented a simple and low-cost clinical tool that can extract postural and kinematic features with the Microsoft Kinect v2 sensor in order to classify and rate PD. Thirty participants were enrolled for the purpose of the present study: sixteen PD patients rated according to MDS-UPDRS and fourteen healthy paired subjects. In order to investigate the motor abilities of the upper and lower body, we acquired and analyzed three main motor tasks: (1) gait, (2) finger tapping, and (3) foot tapping. After preliminary feature selection, different classifiers based on Support Vector Machine (SVM) and Artificial Neural Networks (ANN) were trained and evaluated for the best solution. Results Concerning the gait analysis, results showed that the ANN classifier performed the best by reaching 89.4% of accuracy with only nine features in diagnosis PD and 95.0% of accuracy with only six features in rating PD severity. Regarding the finger and foot tapping analysis, results showed that an SVM using the extracted features was able to classify healthy subjects versus PD patients with great performances by reaching 87.1% of accuracy. The results of the classification between mild and moderate PD patients indicated that the foot tapping features were the most representative ones to discriminate (81.0% of accuracy). Conclusions The results of this study have shown how a low-cost vision-based system can automatically detect subtle phenomena featuring the PD. Our findings suggest that the proposed tool can support medical specialists in the assessment and rating of PD patients in a real clinical scenario.

Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


2020 ◽  
Vol 10 (4) ◽  
pp. 242 ◽  
Author(s):  
Daniele Pietrucci ◽  
Adelaide Teofani ◽  
Valeria Unida ◽  
Rocco Cerroni ◽  
Silvia Biocca ◽  
...  

The involvement of the gut microbiota in Parkinson’s disease (PD), investigated in several studies, identified some common alterations of the microbial community, such as a decrease in Lachnospiraceae and an increase in Verrucomicrobiaceae families in PD patients. However, the results of other bacterial families are often contradictory. Machine learning is a promising tool for building predictive models for the classification of biological data, such as those produced in metagenomic studies. We tested three different machine learning algorithms (random forest, neural networks and support vector machines), analyzing 846 metagenomic samples (472 from PD patients and 374 from healthy controls), including our published data and those downloaded from public databases. Prediction performance was evaluated by the area under curve, accuracy, precision, recall and F-score metrics. The random forest algorithm provided the best results. Bacterial families were sorted according to their importance in the classification, and a subset of 22 families has been identified for the prediction of patient status. Although the results are promising, it is necessary to train the algorithm with a larger number of samples in order to increase the accuracy of the procedure.


Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


2020 ◽  
Author(s):  
Ibrahim Karabayir ◽  
Samuel Goldman ◽  
Suguna Pappu ◽  
Oguz Akbilgic

Abstract Background: Parkinson’s Disease (PD) is a clinically diagnosed neurodegenerative disorder that affects both motor and non-motor neural circuits. Speech deterioration (hypokinetic dysarthria) is a common symptom, which often presents early in the disease course. Machine learning can help movement disorders specialists improve their diagnostic accuracy using non-invasive and inexpensive voice recordings.Method: We used “Parkinson Dataset with Replicated Acoustic Features Data Set” from the UCI-Machine Learning repository. The dataset included 44 speech-test based acoustic features from patients with PD and controls. We analyzed the data using various machine learning algorithms including Light and Extreme Gradient Boosting, Random Forest, Support Vector Machines, K-nearest neighborhood, Least Absolute Shrinkage and Selection Operator Regression, as well as logistic regression. We also implemented a variable importance analysis to identify important variables classifying patients with PD. Results: The cohort included a total of 80 subjects: 40 patients with PD (55% men) and 40 controls (67.5% men). Disease duration was 5 years or less for all subjects, with a mean Unified Parkinson’s Disease Rating Scale (UPDRS) score of 19.6 (SD 8.1), and none were taking PD medication. The mean age for PD subjects and controls was 69.6 (SD 7.8) and 66.4 (SD 8.4), respectively. Our best-performing model used Light Gradient Boosting to provide an AUC of 0.951 with 95% confidence interval 0.946-0.955 in 4-fold cross validation using only seven acoustic features.Conclusions: Machine learning can accurately detect Parkinson’s disease using an inexpensive and non-invasive voice recording. Light Gradient Boosting outperformed other machine learning algorithms. Such approaches could be used to inexpensively screen large patient populations for Parkinson’s disease.


2019 ◽  
Vol 31 (04) ◽  
pp. 1950026
Author(s):  
Yashar Sarbaz ◽  
Behzad Abedi

Objective: Parkinson’s Disease (PD) is a neurodegenerative disease that is categorized by tremor, rigidity, and bradykinesia. Currently, there is no standard method to diagnose patients with PD. One of the common symptoms of PD is gait disorders which are caused by rigid muscles. Gait disorders may start some years before disease diagnosis. Therefore, better understanding of the gait signal can lead to early diagnosis of PD. Methods: Computer-aided system has been useful in early detection of PD symptoms. In the present study, gait disturbances have received attention as potential biomarkers for early diagnosing of PD. Time and frequency analysis of gait signals together can provide more useful information. Wavelet-based features were extracted from stride, swing and double support time signals of healthy subjects and PD patients. These signals were decomposed into five levels using “sym4” wavelet. Mean and standard deviation (SD) of the absolute values of the approximation and detailed coefficients at each level were computed. Then final features were picked accordingly to obtain the best result for the classification. Results: Support Vector Machine (SVM) was employed for classification of patients and healthy people. The classifier performance was measured based on accuracy, sensitivity and specificity. The classifier performance is obtained with 93.3% accuracy employing linear kernel. Conclusions: The proposed system can be employed as a Decision Support Systems (DSSs) for early diagnosing of PD. Presenting DSSs can be employed to screen suspected cases of PD disease for further evaluation. Studying large number of patients and healthy subjects may lead to more precise study on PD. Also, it seems that using other different classifiers, along with our features, can reduce the diagnosis error.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 242 ◽  
Author(s):  
Nicolas Khoury ◽  
Ferhat Attal ◽  
Yacine Amirat ◽  
Latifa Oukhellou ◽  
Samer Mohammed

This article presents a machine learning methodology for diagnosing Parkinson’s disease (PD) based on the use of vertical Ground Reaction Forces (vGRFs) data collected from the gait cycle. A classification engine assigns subjects to healthy or Parkinsonian classes. The diagnosis process involves four steps: data pre-processing, feature extraction and selection, data classification and performance evaluation. The selected features are used as inputs of each classifier. Feature selection is achieved through a wrapper approach established using the random forest algorithm. The proposed methodology uses both supervised classification methods including K-nearest neighbour (K-NN), decision tree (DT), random forest (RF), Naïve Bayes (NB), support vector machine (SVM) and unsupervised classification methods such as K-means and the Gaussian mixture model (GMM). To evaluate the effectiveness of the proposed methodology, an online dataset collected within three different studies is used. This data set includes vGRF measurements collected from eight force sensors placed under each foot of the subjects. Ninety-three patients suffering from Parkinson’s disease and 72 healthy subjects participated in the experiments. The obtained performances are compared with respect to various metrics including accuracy, precision, recall and F-measure. The classification performance evaluation is performed using the leave-one-out cross validation. The results demonstrate the ability of the proposed methodology to accurately differentiate between PD subjects and healthy subjects. For the purpose of validation, the proposed methodology is also evaluated with an additional dataset including subjects with neurodegenerative diseases (Amyotrophic Lateral Sclerosis (ALS) and Huntington’s disease (HD)). The obtained results show the effectiveness of the proposed methodology to discriminate PD subjects from subjects with other neurodegenerative diseases with a relatively high accuracy.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ibrahim Karabayir ◽  
Samuel M. Goldman ◽  
Suguna Pappu ◽  
Oguz Akbilgic

Abstract Background Parkinson’s Disease (PD) is a clinically diagnosed neurodegenerative disorder that affects both motor and non-motor neural circuits. Speech deterioration (hypokinetic dysarthria) is a common symptom, which often presents early in the disease course. Machine learning can help movement disorders specialists improve their diagnostic accuracy using non-invasive and inexpensive voice recordings. Method We used “Parkinson Dataset with Replicated Acoustic Features Data Set” from the UCI-Machine Learning repository. The dataset included 44 speech-test based acoustic features from patients with PD and controls. We analyzed the data using various machine learning algorithms including Light and Extreme Gradient Boosting, Random Forest, Support Vector Machines, K-nearest neighborhood, Least Absolute Shrinkage and Selection Operator Regression, as well as logistic regression. We also implemented a variable importance analysis to identify important variables classifying patients with PD. Results The cohort included a total of 80 subjects: 40 patients with PD (55% men) and 40 controls (67.5% men). Disease duration was 5 years or less for all subjects, with a mean Unified Parkinson’s Disease Rating Scale (UPDRS) score of 19.6 (SD 8.1), and none were taking PD medication. The mean age for PD subjects and controls was 69.6 (SD 7.8) and 66.4 (SD 8.4), respectively. Our best-performing model used Light Gradient Boosting to provide an AUC of 0.951 with 95% confidence interval 0.946–0.955 in 4-fold cross validation using only seven acoustic features. Conclusions Machine learning can accurately detect Parkinson’s disease using an inexpensive and non-invasive voice recording. Light Gradient Boosting outperformed other machine learning algorithms. Such approaches could be used to inexpensively screen large patient populations for Parkinson’s disease.


2020 ◽  
Author(s):  
Ibrahim Karabayir ◽  
Samuel Goldman ◽  
Suguna Pappu ◽  
Oguz Akbilgic

Abstract Background: Parkinson’s Disease (PD) is a clinically diagnosed neurodegenerative disorder that affects both motor and non-motor neural circuits. Speech deterioration (hypokinetic dysarthria) is a common symptom, which often presents early in the disease course. Machine learning can help movement disorders specialists improve their diagnostic accuracy using non-invasive and inexpensive voice recordings.Method: We used “Parkinson Dataset with Replicated Acoustic Features Data Set” from the UCI-Machine Learning repository. The dataset included 44 speech-test based acoustic features from patients with PD and controls. We analyzed the data using various machine learning algorithms including Light and Extreme Gradient Boosting, Random Forest, Support Vector Machines, K-nearest neighborhood, Least Absolute Shrinkage and Selection Operator Regression, as well as logistic regression. We also implemented a variable importance analysis to identify important variables classifying patients with PD. Results: The cohort included a total of 80 subjects: 40 patients with PD (55% men) and 40 controls (67.5% men). Disease duration was 5 years or less for all subjects, with a mean Unified Parkinson’s Disease Rating Scale (UPDRS) score of 19.6 (SD 8.1), and none were taking PD medication. The mean age for PD subjects and controls was 69.6 (SD 7.8) and 66.4 (SD 8.4), respectively. Our best-performing model used Light Gradient Boosting to provide an AUC of 0.951 with 95% confidence interval 0.946-0.955 in 4-fold cross validation using only seven acoustic features.Conclusions: Machine learning can accurately detect Parkinson’s disease using an inexpensive and non-invasive voice recording. Light Gradient Boosting outperformed other machine learning algorithms. Such approaches could be used to inexpensively screen large patient populations for Parkinson’s disease.


2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document