scholarly journals Krüppel-homolog 1 exerts anti-metamorphic and vitellogenic functions in insects via phosphorylation-mediated recruitment of specific cofactors

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhongxia Wu ◽  
Libin Yang ◽  
Huihui Li ◽  
Shutang Zhou

Abstract Background The zinc-finger transcription factor Krüppel-homolog 1 (Kr-h1) exerts a dual regulatory role during insect development by preventing precocious larval/nymphal metamorphosis and in stimulating aspects of adult reproduction such as vitellogenesis. However, how Kr-h1 functions both as a transcriptional repressor in juvenile metamorphosis and an activator in adult reproduction remains elusive. Here, we use the insect Locusta migratoria to dissect the molecular mechanism by which Kr-h1 functions as activator and repressor at these distinct developmental stages. Results We report that the kinase PKCα triggers Kr-h1 phosphorylation at the amino acid residue Ser154, a step essential for its dual functions. During juvenile stage, phosphorylated Kr-h1 recruits a corepressor, C-terminal binding protein (CtBP). The complex of phosphorylated Kr-h1 and CtBP represses the transcription of Ecdysone induced protein 93F (E93) and consequently prevents the juvenile-to-adult transition. In adult insects, phosphorylated Kr-h1 recruits a coactivator, CREB-binding protein (CBP), and promotes vitellogenesis by inducing the expression of Ribosomal protein L36. Furthermore, Kr-h1 phosphorylation with the concomitant inhibition of E93 transcription is evolutionarily conserved across insect orders. Conclusion Our results suggest that Kr-h1 phosphorylation is indispensable for the recruitment of transcriptional cofactors, and for its anti-metamorphic and vitellogenic actions in insects. Our data shed new light on the understanding of Kr-h1 regulation and function in JH-regulated insect metamorphosis and reproduction.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254963
Author(s):  
Youhei Suzuki ◽  
Takahiro Shiotsuki ◽  
Akiya Jouraku ◽  
Ken Miura ◽  
Chieka Minakuchi

Insect metamorphosis into an adult occurs after the juvenile hormone (JH) titer decreases at the end of the juvenile stage. This generally coincides with decreased transcript levels of JH-response transcription factors Krüppel homolog 1 (Kr-h1) and broad (br), and increased transcript levels of the adult specifier E93. Thrips (Thysanoptera) develop through inactive and non-feeding stages referred to as “propupa” and “pupa”, and this type of distinctive metamorphosis is called neometaboly. To understand the mechanisms of hormonal regulation in thrips metamorphosis, we previously analyzed the transcript levels of Kr-h1 and br in two thrips species, Frankliniella occidentalis (Thripidae) and Haplothrips brevitubus (Phlaeothripidae). In both species, the transcript levels of Kr-h1 and br decreased in the “propupal” and “pupal” stages, and their transcription was upregulated by exogenous JH mimic treatment. Here we analyzed the developmental profiles of E93 in these two thrips species. Quantitative RT-PCR revealed that E93 expression started to increase at the end of the larval stage in F. occidentalis and in the “propupal” stage of H. brevitubus, as Kr-h1 and br mRNA levels decreased. Treatment with an exogenous JH mimic at the onset of metamorphosis prevented pupal-adult transition and caused repression of E93. These results indicated that E93 is involved in adult differentiation after JH titer decreases at the end of the larval stage of thrips. By comparing the expression profiles of Kr-h1, br, and E93 among insect species, we propose that the “propupal” and “pupal” stages of thrips have some similarities with the holometabolous prepupal and pupal stages, respectively.


2004 ◽  
Vol 213 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Kazuyuki Shigeno ◽  
Hitoshi Yoshida ◽  
Ling Pan ◽  
Jian Min Luo ◽  
Shinya Fujisawa ◽  
...  

Glycobiology ◽  
2021 ◽  
Author(s):  
Anabela M Cutine ◽  
Camila A Bach ◽  
Florencia Veigas ◽  
Joaquín P Merlo ◽  
Lorena Laporte ◽  
...  

Abstract The relevance of glycan-binding protein in immune tolerance and inflammation has been well established, mainly by studies of C-type lectins, siglecs and galectins both in experimental models and patient samples. Galectins, a family of evolutionarily conserved lectins, are characterized by sequence homology in the carbohydrate-recognition domain (CRD), atypical secretion via an ER-Golgi-independent pathway and the ability to recognize β-galactoside-containing saccharides. Galectin-1 (Gal-1), a prototype member of this family displays mainly anti-inflammatory and immunosuppressive activities, although, similar to many cytokines and growth factors, it may also trigger paradoxical pro-inflammatory effects under certain circumstances. These dual effects could be associated to tissue-, time- or context-dependent regulation of galectin expression and function, including particular pathophysiologic settings and/or environmental conditions influencing the structure of this lectin, as well as the availability of glycosylated ligands in immune cells during the course of inflammatory responses. Here, we discuss the tissue-specific role of Gal-1 as a master regulator of inflammatory responses across different pathophysiologic settings, highlighting its potential role as a therapeutic target. Further studies designed at analyzing the intrinsic and extrinsic pathways that control Gal-1 expression and function in different tissue microenvironments may contribute to design tailored therapeutic strategies aimed at positively or negatively modulate this glycan-binding protein in pathologic inflammatory conditions.


2019 ◽  
Vol 26 (6) ◽  
pp. 414-422
Author(s):  
Jia Liu ◽  
Ping Song ◽  
Jie Zhang ◽  
Ziyan Nangong ◽  
Xiaobei Liu ◽  
...  

Background: Genome sequence analysis (GenBank access No.: FN667742.1) shows that Xenorhabdus nematophila ATCC19061 contains one gene (Xn-cbp) encoding chitin binding protein (Xn-CBP). Objective: The present work aims to clarify the characteristics and function of Xn-CBP from X. nematophila HB310. Methods: In this study, the Xn-cbp gene was cloned and expressed in Escherichia coli BL21 (DE3). Substrate binding assays were performed to explain the ability of Xn-CBP combined with the polysaccharide. The insecticidal toxicity of Xn-CBP against the second-instar larvae of Helicoverpa armigera was determined by feeding method. Besides, the antifungal activity of Xn-CBP against Coniothyrium diplodiella, Verticillium dahlia, and Fusarium oxysporum was tested by spore germination assay and hyphal extension assay. Results: Xn-CBP encoded 199 amino acids with a calculated mass of 28 kDa, which contained a signal peptide and a chitin binding domain. The Bmax and Kd values of Xn-CBP to colloidal chitin were 2.46 and 4.08, respectively. Xn-CBP had insecticidal activity against the H. armigera with a growth inhibition rate of 84.08%. Xn-CBP had the highest spore germination inhibitory effect on C. diplodiella with the inhibition rate of 83.11%. The hyphal growth inhibition rate of Xn-CBP to F. oxysporum, 41.52%, was higher than the other two fungi. Conclusion: The Xn-CBP had the highest binding ability to colloidal chitin and it showed insecticidal activity and antifungal activity. The present study laid a foundation for further exploitation and utilization of X. nematophila.


2021 ◽  
Vol 48 (3) ◽  
pp. 2117-2122
Author(s):  
Hossein Sadeghi ◽  
Sahra Esmkhani ◽  
Reihaneh Pirjani ◽  
Mona Amin-Beidokhti ◽  
Milad Gholami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document