scholarly journals Upregulation of MUC5AC by VEGF in human primary bronchial epithelial cells: implications for asthma

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Sung-Ho Kim ◽  
Qing-Mei Pei ◽  
Ping Jiang ◽  
Juan Liu ◽  
Rong-Fei Sun ◽  
...  

Abstract Background Airway mucus hypersecretion is an important pathophysiological feature in asthma. Mucins are glycoproteins that are mainly responsible for the viscoelastic property of mucus, and MUC5AC is a major mucin glycoprotein that is overproduced in asthma. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Therefore, we sought to investigate the effect of VEGF on MUC5AC expression and study the underlying mechanisms. Methods In order to elucidate the precise mechanism underlying the effect of VEGF on MUC5AC expression, we tested the effects of VEGF on RhoA activation and the association of caveolin-1 and VEGFR2 in Primary Bronchial Epithelial Cells. Results VEGF up-regulated MUC5AC mRNA and protein levels in a dose- and time-dependent manner, and activated RhoA. Additionally, VEGF-induced MUC5AC expression and RhoA activation were enhanced by disrupting caveolae with cholesterol depletion and reversed by cholesterol repletion, and inhibited by a selective VEGF receptor 2 (VEGFR2) inhibitor SU1498. Furthermore, phospho-VEGFR2 expression was decreased via overexpression of caveolin-1. VEGF treatment reduced the association of caveolin-1 and VEGFR2. Conclusion Collectively, our findings suggest that VEGF up-regulates MUC5AC expression and RhoA activation by interaction with VEGFR2, and this phenomenon was related with the association of caveolin-1 and VEGFR2. Further studies on these mechanisms are needed to facilitate the development of treatments for asthma.

2021 ◽  
Vol 27 (3) ◽  
pp. 251-259
Author(s):  
Michael Glöckner ◽  
Sebastian Marwitz ◽  
Kristina Rohmann ◽  
Henrik Watz ◽  
Dörte Nitschkowski ◽  
...  

Non-typeable Haemophilus influenzae (NTHi) is the most common respiratory pathogen in patients with chronic obstructive disease. Limited data is available investigating the impact of NTHi infections on cellular re-differentiation processes in the bronchial mucosa. The aim of this study was to assess the effects of stimulation with NTHi on the bronchial epithelium regarding cellular re-differentiation processes using primary bronchial epithelial cells harvested from infection-free patients undergoing bronchoscopy. The cells were then cultivated using an air-liquid interface and stimulated with NTHi and TGF-β. Markers of epithelial and mesenchymal cells were analyzed using immunofluorescence, Western blot and qRT-PCR. Stimulation with both NTHi and TGF-ß led to a marked increase in the expression of the mesenchymal marker vimentin, while E-cadherin as an epithelial marker maintained a stable expression throughout the experiments. Furthermore, expression of collagen 4 and the matrix-metallopeptidases 2 and 9 were increased after stimulation, while the expression of tissue inhibitors of metallopeptidases was not affected by pathogen stimulation. In this study we show a direct pathogen-induced trans-differentiation of primary bronchial epithelial cells resulting in a co-localization of epithelial and mesenchymal markers and an up-regulation of extracellular matrix components.


2017 ◽  
Vol 23 (1) ◽  
pp. 247-257 ◽  
Author(s):  
Karlhans Fru Che ◽  
Riitta Kaarteenaho ◽  
Elisa Lappi-Blanco ◽  
Bettina Levänen ◽  
Jitong Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document