scholarly journals Malaria vectors in the Democratic Republic of the Congo: the mechanisms that confer insecticide resistance in Anopheles gambiae and Anopheles funestus

2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Luisa Nardini ◽  
Richard H. Hunt ◽  
Yael L. Dahan-Moss ◽  
Nanette Christie ◽  
Riann N. Christian ◽  
...  
2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Jeanine A. C. M. Loonen ◽  
Dominic B. Dery ◽  
Bertin Z. Musaka ◽  
Janvier B. Bandibabone ◽  
Teun Bousema ◽  
...  

Abstract Background Malaria remains a major public health concern in the Democratic Republic of the Congo (DRC) and its control is affected by recurrent conflicts. Médecins Sans Frontières (MSF) initiated several studies to better understand the unprecedented incidence of malaria to effectively target and implement interventions in emergency settings. The current study evaluated the main vector species involved in malaria transmission and their resistance to insecticides, with the aim to propose the most effective tools and strategies for control of local malaria vectors. Methods This study was performed in 52 households in Shamwana (Katanga, 2014), 168 households in Baraka (South Kivu, 2015) and 269 households in Kashuga (North Kivu, 2017). Anopheles vectors were collected and subjected to standardized Word Health Organization (WHO) and Center for Disease Control (CDC) insecticide susceptibility bioassays. Mosquito species determination was done using PCR and Plasmodium falciparum infection in mosquitoes was assessed by ELISA targeting circumsporozoite protein. Results Of 3517 Anopheles spp. mosquitoes collected, Anopheles gambiae sensu lato (s.l.) (29.6%) and Anopheles funestus (69.1%) were the main malaria vectors. Plasmodium falciparum infection rates for An. gambiae s.l. were 1.0, 2.1 and 13.9% for Shamwana, Baraka and Kashuga, respectively. Anopheles funestus showed positivity rates of 1.6% in Shamwana and 4.4% in Baraka. No An. funestus were collected in Kashuga. Insecticide susceptibility tests showed resistance development towards pyrethroids in all locations. Exposure to bendiocarb, malathion and pirimiphos-methyl still resulted in high mosquito mortality. Conclusions This is one of only few studies from these conflict areas in DRC to report insecticide resistance in local malaria vectors. The data suggest that current malaria prevention methods in these populations are only partially effective, and require additional tools and strategies. Importantly, the results triggered MSF to consider the selection of a new insecticide for indoor residual spraying (IRS) and a new long-lasting insecticide-treated net (LLIN). The reinforcement of correct usage of LLINs and the introduction of targeted larviciding were also included as additional vector control tools as a result of the studies.


2020 ◽  
Vol 5 ◽  
pp. 146
Author(s):  
Francis N. Nkemngo ◽  
Leon M. J. Mugenzi ◽  
Ebai Terence ◽  
Abdoulaye Niang ◽  
Murielle J. Wondji ◽  
...  

Background: Reducing the burden of malaria requires better understanding of vector populations, particularly in forested regions where the incidence remains elevated. Here, we characterized malaria vectors in a locality near the Yaoundé international airport, Cameroon, including species composition, abundance, Plasmodium infection rate, insecticide resistance profiles and underlying resistance mechanisms. Methods: Blood-fed adult mosquitoes resting indoors were aspirated from houses in April 2019 at Elende, a village located 2 km from the Yaoundé-Nsimalen airport. Female mosquitoes were forced to lay eggs to generate F1 adult progeny. Bioassays were performed to assess resistance profile to insecticides. The threshold of insecticide susceptibility was defined above 98% mortality rate and mortality rates below 90% were indicative of confirmed insecticide resistance. Furthermore, the molecular basis of resistance and Plasmodium infection rates were investigated. Results: Anopheles funestus s.s. was most abundant species in Elende (85%) followed by Anopheles gambiae s.s. (15%) with both having a similar sporozoite rate. Both species exhibited high levels of resistance to pyrethroids (<40% mortality). An. gambiae s.s. was also resistant to DDT (9.9% mortality) and bendiocarb (54% mortality) while susceptible to organophosphate. An. funestus s.s. was resistant to dieldrin (1% mortality), DDT (86% mortality) but susceptible to carbamates and organophosphates. The L119F-GSTe2 resistance allele (8%) and G119S ace-1 resistance allele (15%) were detected in An. funestus s.s. and An. gambiae s.s., respectively. Furthermore, the high pyrethroid/DDT resistances in An. gambiae s.s. corresponded with an increase frequency of 1014F kdr allele (95%). Transcriptional profiling of candidate cytochrome P450 genes reveals the over-expression of CYP6P5, CYP6P9a and CYP6P9b. Conclusion: The resistance to multiple insecticide classes observed in these vector populations alongside the high Plasmodium sporozoite rate highlights the challenges that vector control programs encounter in sustaining the regular benefits of contemporary insecticide-based control interventions in forested areas.


2020 ◽  
Author(s):  
Nkemngo Francis Nongley ◽  
Jean Leon Mugenzi Mbugulize ◽  
Ebai Terence ◽  
Abdoulaye Niang ◽  
Murielle Wondji ◽  
...  

Abstract Background Reducing the burden of malaria requires better understanding of vector populations particularly in forested regions where the incidence remains elevated. Here, we characterized malaria vectors in a locality near the international airport of Yaoundé, the capital city of Cameroon, including species composition, abundance, Plasmodium infection rate; insecticide resistance profiles and underlying resistance mechanisms. Methods Blood-fed adult mosquitoes resting indoors were aspirated from houses in April 2019 at Elende, a village located 2km from the Yaoundé-Nsimalen airport. Female mosquitoes were forced to lay eggs to generate F 1 adult progeny. WHO bioassays were performed to assess resistance profile to insecticides. The threshold of insecticide susceptibility was fixed above 98% mortality rate and mortality rates below 90% were considered indicative of confirmed insecticide resistance according to the WHO test procedures for insecticide resistance monitoring. Furthermore, the molecular basis of resistance and Plasmodium infection rates were investigated.Results Anopheles funestus s.s. was most abundant species in Elende (85%) followed by Anopheles gambiae s.s. (15%) with both having a similar sporozoite infection rate. Both species exhibited high levels of resistance to pyrethroids (<40% mortality). An. gambiae s.s. was also resistant to DDT (9.9% mortality) and bendiocarb (54% mortality) while susceptible to organophosphate. An. funestus s.s. was resistant to dieldrin (1% mortality), DDT (86% mortality) but susceptible to carbamates and organophosphates. The DDT/pyrethroid L119F-GSTe2 resistance allele (8%) and G119S ace -1 resistance allele (15%) were detected in An. funestus s.s. and An. gambiae s.s. respectively. Furthermore, the high pyrethroid/DDT resistances in An. gambiae s.s. corresponded with an increase frequency of 1014F kdr allele (95%). The CYP6P9a P450 resistance allele was absent in the An. funestus s.s. population meanwhile transcriptional profiling of candidate cytochrome P450 genes reveals the over-expression of CYP6P5 , CYP6P9a and CYP6P9b. Conclusion The resistance to multiple insecticide classes observed in these vector populations alongside the high Plasmodium infection rate highlights the challenges that public health vector control programs encounter in sustaining the regular effectiveness of contemporary insecticide-based control interventions in forested areas. More particularly, the resistance observed against the carbamates and possible resistance against the organophosphates constitutes a major concern for IRS.


2020 ◽  
Vol 5 ◽  
pp. 146
Author(s):  
Francis N. Nkemngo ◽  
Leon M. J. Mugenzi ◽  
Ebai Terence ◽  
Abdoulaye Niang ◽  
Murielle J. Wondji ◽  
...  

Background: Reducing the burden of malaria requires better understanding of vector populations, particularly in forested regions where the incidence remains elevated. Here, we characterized malaria vectors in a locality near the Yaoundé international airport, Cameroon, including species composition, abundance, Plasmodium infection rate, insecticide resistance profiles and underlying resistance mechanisms. Methods: Blood-fed adult mosquitoes resting indoors were aspirated from houses in April 2019 at Elende, a locality situated 2 km from the Yaoundé-Nsimalen airport. Female mosquitoes were forced to lay eggs to generate F 1 adults. Bioassays were performed to assess resistance profile to the four insecticides classes. The threshold of insecticide susceptibility was defined above 98% mortality rate and mortality rates below 90% were indicative of confirmed insecticide resistance. Furthermore, the molecular basis of resistance and Plasmodium infection rates were investigated. Results: Anopheles funestus s.s. was the most abundant species in Elende (85%) followed by Anopheles gambiae s.s. (15%) with both having similar sporozoite rate. Both species exhibited high levels of resistance to the pyrethroids, permethrin and deltamethrin (<40% mortality). An. gambiae s.s. was resistant to DDT (9.9% mortality) and bendiocarb (54% mortality) while susceptible to organophosphate. An. funestus s.s. was resistant to dieldrin (1% mortality), DDT (86% mortality) but susceptible to carbamates and organophosphates. The L119F-GSTe2 resistance allele (8%) and G119S ace-1 resistance allele (15%) were detected in An. funestus s.s. and An. gambiae s.s., respectively. Furthermore, the high pyrethroid/DDT resistances in An. gambiae corresponded with an increase frequency of 1014F kdr allele (95%). Transcriptional profiling of candidate cytochrome P450 genes reveals the over-expression of CYP6P5, CYP6P9a and CYP6P9b. Conclusion: The resistance to multiple insecticide classes observed in these vector populations alongside the significant Plasmodium sporozoite rate highlights the challenges that vector control programs encounter in sustaining the regular benefits of contemporary insecticide-based control interventions in forested areas.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dieudonné Diloma Soma ◽  
Barnabas Zogo ◽  
Domonbabele François de Sales Hien ◽  
Aristide Sawdetuo Hien ◽  
Didier Alexandre Kaboré ◽  
...  

Abstract Background The rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. A randomized control trial (RCT) was conducted with the aim to investigate the benefit of deploying complementary strategies, including indoor residual spraying (IRS) with pirimiphos-methyl in addition to long-lasting insecticidal nets (LLINs) in Diébougou, southwest Burkina Faso. Methods We measured the susceptibility of the Anopheles gambiae (s.l.) population from Diébougou to conventional insecticides. We further monitored the efficacy and residual activity of pirimiphos-methyl on both cement and mud walls using a laboratory susceptible strain (Kisumu) and the local An. gambiae (s.l.) population. Results An. gambiae (s.l.) from Diébougou was resistant to DDT, pyrethroids (deltamethrin, permethrin and alphacypermethrin) and bendiocarb but showed susceptibility to organophosphates (pirimiphos-methyl and chlorpyrimiphos-methyl). A mixed-effect generalized linear model predicted that pirimiphos-methyl applied on cement or mud walls was effective for 210 days against the laboratory susceptible strain and 247 days against the local population. The residual efficacy of pirimiphos-methyl against the local population on walls made of mud was similar to that of cement (OR = 0.792, [0.55–1.12], Tukey’s test p-value = 0.19). Conclusions If data on malaria transmission and malaria cases (as measured trough the RCT) are consistent with data on residual activity of pirimiphos-methyl regardless of the type of wall, one round of IRS with pirimiphos-methyl would have the potential to control malaria in a context of multi-resistant An. gambiae (s.l.) for at least 7 months.


Author(s):  
Adandé A Medjigbodo ◽  
Luc S Djogbenou ◽  
Aubin A Koumba ◽  
Laurette Djossou ◽  
Athanase Badolo ◽  
...  

Abstract An effective control of malaria vectors requires an extensive knowledge of mechanisms underlying the resistance-phenotypes developed by these vectors against insecticides. We investigated Anopheles gambiae mosquitoes from Benin and Togo for their intensity of insecticide resistance and we discussed the involvement of genotyped mechanisms in the resistance-phenotypes observed. Three- to five-day-old adult mosquitoes emerged from field and laboratory An. gambiae larvae were assayed using WHO tube intensity tests against various doses of deltamethrin: 1× (0.05%); 2× (0.1%); 5× (0.25%); 7.5× (0.375%) and those of pirimiphos-methyl: 0.5× (0.125%); 1× (0.25%). Members of An. gambiae complex were screened in field populations using polymerase chain reaction (PCR) assays. The presence of kdrR(1014F/1014S) and ace-1R(119S) mutations was also investigated using TaqMan and PCR-RFLP techniques, respectively. Anopheles gambiae from field were very resistant to deltamethrin, whereas KisKdr and AcerKdrKis strains displayed 100% mortality rates at 2× the diagnostic dose. In contrast, the field mosquitoes displayed a low resistance-intensity against 1× the diagnostic dose of pirimiphos-methyl, whereas AcerKis and AcerKdrKis strains showed susceptibility at 0.5× the diagnostic dose. Anopheles gambiae s.s., Anopheles coluzzii, and Anopheles arabiensis were identified. Allelic frequencies of kdrR (1014F) and ace-1R (119S) mutations in the field populations varied from 0.65 to 1 and 0 to 0.84, respectively. The field An. gambiae displayed high-resistance levels against deltamethrin and pirimiphos-methyl when compared with those of the laboratory An. gambiae-resistant strains. These results exhibit the complexity of underlying insecticide resistance mechanisms in these field malaria vectors.


1995 ◽  
Vol 85 (2) ◽  
pp. 229-234 ◽  
Author(s):  
J. Hemingway ◽  
S.W. Lindsay ◽  
G.J. Small ◽  
M. Jawara ◽  
F.H. Collins

AbstractPyrethroid-impregnated bednets are being used nationwide in The Gambia. The future success of this malaria control programme depends partly on the vectors remaining susceptible to those insecticides used for treating the nets. The present study was carried out on the south bank of the river Gambia, during the first large scale trial of nets in this country. Thus this area represents a sentinel site for detecting insecticide resistance in local vectors. This study gives an example of how a system of early detection for resistance problems can be set up in a relatively complex situation where multiple vectors and non-vectors are present. Samples of the Anopheles gambiae complex were caught indoors using light traps in twelve villages used in the bednet study. In all villages A. gambiae sensu stricto Giles was the predominant member of the complex as determined using the rDNA-PCR diagnostic assay. Limited bioassays with DDT and permethrin, and biochemical assays for a range of insecticide resistance mechanisms suggest that the A. gambiae complex remains completely susceptible to all major classes of commonly used insecticides including pyrethroids. Biochemical assays suggest that a low frequency of DDT resistance may occur in A. melas Theobald. This is based on elevated glutathione S-transferase levels coupled with increased levels of DDT metabolism and does not involve cross-resistance to pyrethroids. Therefore we do not envisage a decline in the efficacy of treated nets against malaria vectors in the study area in the immediate future, although monitoring should be continued whilst wide-scale use of impregnated bednets is operational.


2005 ◽  
Vol 71 (11) ◽  
pp. 7217-7223 ◽  
Author(s):  
Jenny M. Lindh ◽  
Olle Terenius ◽  
Ingrid Faye

ABSTRACT Field-collected mosquitoes of the two main malaria vectors in Africa, Anopheles gambiae sensu lato and Anopheles funestus, were screened for their midgut bacterial contents. The midgut from each blood-fed mosquito was screened with two different detection pathways, one culture independent and one culture dependent. Bacterial species determination was achieved by sequence analysis of 16S rRNA genes. Altogether, 16 species from 14 genera were identified, 8 by each method. Interestingly, several of the bacteria identified are related to bacteria known to be symbionts in other insects. One isolate, Nocardia corynebacterioides, is a relative of the symbiont found in the vector for Chagas' disease that has been proven useful as a paratransgenic bacterium. Another isolate is a novel species within the γ-proteobacteria that could not be phylogenetically placed within any of the known orders in the class but is close to a group of insect symbionts. Bacteria representing three intracellular genera were identified, among them the first identifications of Anaplasma species from mosquitoes and a new mosquito-Spiroplasma association. The isolates will be further investigated for their suitability for a paratransgenic Anopheles mosquito.


Sign in / Sign up

Export Citation Format

Share Document