scholarly journals Insecticide resistance in Anopheles arabiensis from Ethiopia (2012–2016): a nationwide study for insecticide resistance monitoring

2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Louisa A. Messenger ◽  
Josephat Shililu ◽  
Seth R. Irish ◽  
Gedeon Yohannes Anshebo ◽  
Alemayehu Getachew Tesfaye ◽  
...  
2021 ◽  
Vol 20 (3) ◽  
pp. 783-791 ◽  
Author(s):  
Dan-dan ZHANG ◽  
Yu-tao XIAO ◽  
Peng-jun XU ◽  
Xian-ming YANG ◽  
Qiu-lin WU ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Pauline Winnie Orondo ◽  
Steven G. Nyanjom ◽  
Harrysone Atieli ◽  
John Githure ◽  
Benyl M. Ondeto ◽  
...  

Abstract Background Malaria control in Kenya is based on case management and vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of insecticide resistance compromises the effectiveness of insecticide-based vector control programs. The use of pesticides for agricultural purposes has been implicated as one of the sources driving the selection of resistance. The current study was undertaken to assess the status and mechanism of insecticide resistance in malaria vectors in irrigated and non-irrigated areas with varying agrochemical use in western Kenya. Methods The study was carried out in 2018–2019 in Homa Bay County, western Kenya. The bioassay was performed on adults reared from larvae collected from irrigated and non-irrigated fields in order to assess the susceptibility of malaria vectors to different classes of insecticides following the standard WHO guidelines. Characterization of knockdown resistance (kdr) and acetylcholinesterase-inhibiting enzyme/angiotensin-converting enzyme (Ace-1) mutations within Anopheles gambiae s.l. species was performed using the polymerase chain reaction (PCR) method. To determine the agricultural and public health insecticide usage pattern, a questionnaire was administered to farmers, households, and veterinary officers in the study area. Results Anopheles arabiensis was the predominant species in the irrigated (100%, n = 154) area and the dominant species in the non-irrigated areas (97.5%, n = 162), the rest being An. gambiae sensu stricto. In 2018, Anopheles arabiensis in the irrigated region were susceptible to all insecticides tested, while in the non-irrigated region reduced mortality was observed (84%) against deltamethrin. In 2019, phenotypic mortality was decreased (97.8–84% to 83.3–78.2%). In contrast, high mortality from malathion (100%), DDT (98.98%), and piperonyl butoxide (PBO)-deltamethrin (100%) was observed. Molecular analysis of the vectors from the irrigated and non-irrigated areas revealed low levels of leucine-serine/phenylalanine substitution at position 1014 (L1014S/L1014F), with mutation frequencies of 1–16%, and low-frequency mutation in the Ace-1R gene (0.7%). In addition to very high coverage of LLINs impregnated with pyrethroids and IRS with organophosphate insecticides, pyrethroids were the predominant chemical class of pesticides used for crop and animal protection. Conclusion Anopheles arabiensis from irrigated areas showed increased phenotypic resistance, and the intensive use of pesticides for crop protection in this region may have contributed to the selection of resistance genes observed. The susceptibility of these malaria vectors to organophosphates and PBO synergists in pyrethroids offers a promising future for IRS and insecticide-treated net-based vector control interventions. These findings emphasize the need for integrated vector control strategies, with particular attention to agricultural practices to mitigate mosquito resistance to insecticides. Graphic abstract


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Venugopala K. Narayanaswamy ◽  
Raquel M. Gleiser ◽  
Kabange Kasumbwe ◽  
Bandar E. Aldhubiab ◽  
Mahesh V. Attimarad ◽  
...  

Mosquitoes are the major vectors of parasites and pathogens affecting humans and domestic animals. The widespread development of insecticide resistance and negative environmental effects of most synthetic compounds support an interest in finding and developing alternative products against mosquitoes. Natural coumarins and synthetic coumarin analogues are known for their several pharmacological properties, including being insecticidal. In the present study halogenated coumarins (3-mono/dibromo acetyl, 6-halogenated coumarin analogues) were screened for larvicidal, adulticidal, and repellent properties againstAnopheles arabiensis, a zoophilic mosquito that is one of the dominant vectors of malaria in Africa. Five compounds exerted 100% larval mortality within 24 h of exposure. All coumarins and halogenated coumarins reversibly knocked down adult mosquitoes but did not kill them after 24 h of exposure. Repellent properties could not be evidenced. Five compounds were considered potential larvicidal agents for further research and development, while adulticidal activity was considered only mild to moderate.


2002 ◽  
Vol 5 (10) ◽  
pp. 1070-1073 ◽  
Author(s):  
Riaz Shah ◽  
Karen Armstrong ◽  
Sue P. Worner . ◽  
R. Bruce Chapman .

2012 ◽  
Vol 5 (1) ◽  
Author(s):  
Luisa Nardini ◽  
Riann N Christian ◽  
Nanette Coetzer ◽  
Hilary Ranson ◽  
Maureen Coetzee ◽  
...  

Author(s):  
Sara A. Abuelmaali ◽  
Arwa H. Elaagip ◽  
Mohammed A. Basheer ◽  
Ehab A. Frah ◽  
Fayez T. A. Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document