scholarly journals Detoxification enzymes associated with insecticide resistance in laboratory strains of Anopheles arabiensis of different geographic origin

2012 ◽  
Vol 5 (1) ◽  
Author(s):  
Luisa Nardini ◽  
Riann N Christian ◽  
Nanette Coetzer ◽  
Hilary Ranson ◽  
Maureen Coetzee ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Pauline Winnie Orondo ◽  
Steven G. Nyanjom ◽  
Harrysone Atieli ◽  
John Githure ◽  
Benyl M. Ondeto ◽  
...  

Abstract Background Malaria control in Kenya is based on case management and vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of insecticide resistance compromises the effectiveness of insecticide-based vector control programs. The use of pesticides for agricultural purposes has been implicated as one of the sources driving the selection of resistance. The current study was undertaken to assess the status and mechanism of insecticide resistance in malaria vectors in irrigated and non-irrigated areas with varying agrochemical use in western Kenya. Methods The study was carried out in 2018–2019 in Homa Bay County, western Kenya. The bioassay was performed on adults reared from larvae collected from irrigated and non-irrigated fields in order to assess the susceptibility of malaria vectors to different classes of insecticides following the standard WHO guidelines. Characterization of knockdown resistance (kdr) and acetylcholinesterase-inhibiting enzyme/angiotensin-converting enzyme (Ace-1) mutations within Anopheles gambiae s.l. species was performed using the polymerase chain reaction (PCR) method. To determine the agricultural and public health insecticide usage pattern, a questionnaire was administered to farmers, households, and veterinary officers in the study area. Results Anopheles arabiensis was the predominant species in the irrigated (100%, n = 154) area and the dominant species in the non-irrigated areas (97.5%, n = 162), the rest being An. gambiae sensu stricto. In 2018, Anopheles arabiensis in the irrigated region were susceptible to all insecticides tested, while in the non-irrigated region reduced mortality was observed (84%) against deltamethrin. In 2019, phenotypic mortality was decreased (97.8–84% to 83.3–78.2%). In contrast, high mortality from malathion (100%), DDT (98.98%), and piperonyl butoxide (PBO)-deltamethrin (100%) was observed. Molecular analysis of the vectors from the irrigated and non-irrigated areas revealed low levels of leucine-serine/phenylalanine substitution at position 1014 (L1014S/L1014F), with mutation frequencies of 1–16%, and low-frequency mutation in the Ace-1R gene (0.7%). In addition to very high coverage of LLINs impregnated with pyrethroids and IRS with organophosphate insecticides, pyrethroids were the predominant chemical class of pesticides used for crop and animal protection. Conclusion Anopheles arabiensis from irrigated areas showed increased phenotypic resistance, and the intensive use of pesticides for crop protection in this region may have contributed to the selection of resistance genes observed. The susceptibility of these malaria vectors to organophosphates and PBO synergists in pyrethroids offers a promising future for IRS and insecticide-treated net-based vector control interventions. These findings emphasize the need for integrated vector control strategies, with particular attention to agricultural practices to mitigate mosquito resistance to insecticides. Graphic abstract


2019 ◽  
Author(s):  
Walter Fabricio Silva Martins ◽  
Craig Stephen Wilding ◽  
Alison Taylor Isaacs ◽  
Emily Joy Rippon ◽  
Karine Megy ◽  
...  

ABSTRACTCulex quinquefasciatusplays an important role in transmission of vector-borne diseases of public health importance, including lymphatic filariasis (LF), as well as many arboviral diseases. Currently, efforts to tackleC. quinquefasciatusvectored diseases are based on either mass drug administration (MDA) for LF, or insecticide-based interventions. Widespread and intensive insecticide usage has resulted in increased resistance in mosquito vectors, includingC. quinquefasciatus. Herein, the transcriptome profile of Ugandan bendiocarb-resistantC. quinquefasciatuswas explored to identify candidate genes associated with insecticide resistance. Resistance to bendiocarb in exposed mosquitoes was marked, with 2.04% mortality following 1h exposure and 58.02% after 4h. Genotyping of the G119SAce-1target site mutation detected a highly significant association (p<0.0001; OR=25) between resistance andAce1-119S. However, synergist assays using the P450 inhibitor PBO or the esterase inhibitor TPP resulted in markedly increased mortality (to ≈80%), suggesting a role of metabolic resistance in the resistance phenotype. Using a novel, custom 60K whole-transcriptome microarray 16 genes significantly overexpressed in resistant mosquitoes were detected, with the P450Cyp6z18showing the highest differential gene expression (>8-fold increase vs unexposed controls). These results provide evidence that bendiocarb-resistance in UgandanC. quinquefasciatusis mediated by both target-site mechanisms and over-expression of detoxification enzymes.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Venugopala K. Narayanaswamy ◽  
Raquel M. Gleiser ◽  
Kabange Kasumbwe ◽  
Bandar E. Aldhubiab ◽  
Mahesh V. Attimarad ◽  
...  

Mosquitoes are the major vectors of parasites and pathogens affecting humans and domestic animals. The widespread development of insecticide resistance and negative environmental effects of most synthetic compounds support an interest in finding and developing alternative products against mosquitoes. Natural coumarins and synthetic coumarin analogues are known for their several pharmacological properties, including being insecticidal. In the present study halogenated coumarins (3-mono/dibromo acetyl, 6-halogenated coumarin analogues) were screened for larvicidal, adulticidal, and repellent properties againstAnopheles arabiensis, a zoophilic mosquito that is one of the dominant vectors of malaria in Africa. Five compounds exerted 100% larval mortality within 24 h of exposure. All coumarins and halogenated coumarins reversibly knocked down adult mosquitoes but did not kill them after 24 h of exposure. Repellent properties could not be evidenced. Five compounds were considered potential larvicidal agents for further research and development, while adulticidal activity was considered only mild to moderate.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009556
Author(s):  
Linda Grigoraki ◽  
Ruth Cowlishaw ◽  
Tony Nolan ◽  
Martin Donnelly ◽  
Gareth Lycett ◽  
...  

Insecticide resistance in Anopheles mosquitoes is a major obstacle in maintaining the momentum in reducing the malaria burden; mitigating strategies require improved understanding of the underlying mechanisms. Mutations in the target site of insecticides (the voltage gated sodium channel for the most widely used pyrethroid class) and over-expression of detoxification enzymes are commonly reported, but their relative contribution to phenotypic resistance remain poorly understood. Here we present a genome editing pipeline to introduce single nucleotide polymorphisms in An. gambiae which we have used to study the effect of the classical kdr mutation L1014F (L995F based on An. gambiae numbering), one of the most widely distributed resistance alleles. Introduction of 1014F in an otherwise fully susceptible genetic background increased levels of resistance to all tested pyrethroids and DDT ranging from 9.9-fold for permethrin to >24-fold for DDT. The introduction of the 1014F allele was sufficient to reduce mortality of mosquitoes after exposure to deltamethrin treated bednets, even as the only resistance mechanism present. When 1014F was combined with over-expression of glutathione transferase Gste2, resistance to permethrin increased further demonstrating the critical combined effect between target site resistance and detoxification enzymes in vivo. We also show that mosquitoes carrying the 1014F allele in homozygosity showed fitness disadvantages including increased mortality at the larval stage and a reduction in fecundity and adult longevity, which can have consequences for the strength of selection that will apply to this allele in the field.


Author(s):  
Sara A. Abuelmaali ◽  
Arwa H. Elaagip ◽  
Mohammed A. Basheer ◽  
Ehab A. Frah ◽  
Fayez T. A. Ahmed ◽  
...  

2021 ◽  
Author(s):  
Linda Grigoraki ◽  
Ruth Cowlishaw ◽  
Tony Nolan ◽  
Martin Donnelly ◽  
Gareth Lycett ◽  
...  

AbstractInsecticide resistance in Anopheles mosquitoes is a major obstacle in maintaining the momentum in reducing the malaria burden; mitigating strategies require improved understanding of the underlying mechanisms. Mutations in the target site of insecticides (the voltage gated sodium channel for the most widely used pyrethroid class) and over-expression of detoxification enzymes are commonly reported, but their relative contribution to phenotypic resistance remain poorly understood. Here we present a genome editing pipeline to introduce single nucleotide polymorphisms in An. gambiae which we have used to study the effect of the classical kdr mutation L1014F (L995F based on An. gambiae numbering), one of the most widely distributed resistance alleles. Introduction of 1014F in an otherwise fully susceptible genetic background increased levels of resistance to all tested pyrethroids and DDT ranging from 9.9-fold for permethrin to >24-fold for DDT. The introduction of the 1014F allele was sufficient to reduce mortality of mosquitoes after exposure to deltamethrin treated bednets, even as the only resistance mechanism present. When 1014F was combined with over-expression of glutathione transferase Gste2, resistance to permethrin increased further demonstrating the critical combined effect between target site resistance and detoxification enzymes in vivo. We also show that mosquitoes carrying the 1014F allele in homozygosity showed fitness disadvantages including increased mortality at the larval stage and a reduction in fecundity and adult longevity, which can have consequences for the strength of selection that will apply to this allele in the field.Author SummaryEscalation of pyrethroid resistance in Anopheles mosquitoes threatens to reduce the effectiveness of our most important tools in malaria control. Studying the mechanisms underlying insecticide resistance is critical to design mitigation strategies. Here, using genome modified mosquitoes, we functionally characterize the most prevalent mutation in resistant mosquitoes, showing that it confers substantial levels of resistance to all tested pyrethroids and undermines the performance of pyrethroid-treated nets. Furthermore, we show that combining this mutation with elevated levels of a detoxification enzyme further increases resistance. The pipeline we have developed provides a robust approach to quantifying the contribution of different combinations of resistance mechanisms to the overall phenotype, providing the missing link between resistance monitoring and predictions of resistance impact.


Sign in / Sign up

Export Citation Format

Share Document