scholarly journals Evaluation of Halogenated Coumarins for Antimosquito Properties

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Venugopala K. Narayanaswamy ◽  
Raquel M. Gleiser ◽  
Kabange Kasumbwe ◽  
Bandar E. Aldhubiab ◽  
Mahesh V. Attimarad ◽  
...  

Mosquitoes are the major vectors of parasites and pathogens affecting humans and domestic animals. The widespread development of insecticide resistance and negative environmental effects of most synthetic compounds support an interest in finding and developing alternative products against mosquitoes. Natural coumarins and synthetic coumarin analogues are known for their several pharmacological properties, including being insecticidal. In the present study halogenated coumarins (3-mono/dibromo acetyl, 6-halogenated coumarin analogues) were screened for larvicidal, adulticidal, and repellent properties againstAnopheles arabiensis, a zoophilic mosquito that is one of the dominant vectors of malaria in Africa. Five compounds exerted 100% larval mortality within 24 h of exposure. All coumarins and halogenated coumarins reversibly knocked down adult mosquitoes but did not kill them after 24 h of exposure. Repellent properties could not be evidenced. Five compounds were considered potential larvicidal agents for further research and development, while adulticidal activity was considered only mild to moderate.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Pauline Winnie Orondo ◽  
Steven G. Nyanjom ◽  
Harrysone Atieli ◽  
John Githure ◽  
Benyl M. Ondeto ◽  
...  

Abstract Background Malaria control in Kenya is based on case management and vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of insecticide resistance compromises the effectiveness of insecticide-based vector control programs. The use of pesticides for agricultural purposes has been implicated as one of the sources driving the selection of resistance. The current study was undertaken to assess the status and mechanism of insecticide resistance in malaria vectors in irrigated and non-irrigated areas with varying agrochemical use in western Kenya. Methods The study was carried out in 2018–2019 in Homa Bay County, western Kenya. The bioassay was performed on adults reared from larvae collected from irrigated and non-irrigated fields in order to assess the susceptibility of malaria vectors to different classes of insecticides following the standard WHO guidelines. Characterization of knockdown resistance (kdr) and acetylcholinesterase-inhibiting enzyme/angiotensin-converting enzyme (Ace-1) mutations within Anopheles gambiae s.l. species was performed using the polymerase chain reaction (PCR) method. To determine the agricultural and public health insecticide usage pattern, a questionnaire was administered to farmers, households, and veterinary officers in the study area. Results Anopheles arabiensis was the predominant species in the irrigated (100%, n = 154) area and the dominant species in the non-irrigated areas (97.5%, n = 162), the rest being An. gambiae sensu stricto. In 2018, Anopheles arabiensis in the irrigated region were susceptible to all insecticides tested, while in the non-irrigated region reduced mortality was observed (84%) against deltamethrin. In 2019, phenotypic mortality was decreased (97.8–84% to 83.3–78.2%). In contrast, high mortality from malathion (100%), DDT (98.98%), and piperonyl butoxide (PBO)-deltamethrin (100%) was observed. Molecular analysis of the vectors from the irrigated and non-irrigated areas revealed low levels of leucine-serine/phenylalanine substitution at position 1014 (L1014S/L1014F), with mutation frequencies of 1–16%, and low-frequency mutation in the Ace-1R gene (0.7%). In addition to very high coverage of LLINs impregnated with pyrethroids and IRS with organophosphate insecticides, pyrethroids were the predominant chemical class of pesticides used for crop and animal protection. Conclusion Anopheles arabiensis from irrigated areas showed increased phenotypic resistance, and the intensive use of pesticides for crop protection in this region may have contributed to the selection of resistance genes observed. The susceptibility of these malaria vectors to organophosphates and PBO synergists in pyrethroids offers a promising future for IRS and insecticide-treated net-based vector control interventions. These findings emphasize the need for integrated vector control strategies, with particular attention to agricultural practices to mitigate mosquito resistance to insecticides. Graphic abstract


2012 ◽  
Vol 5 (1) ◽  
Author(s):  
Luisa Nardini ◽  
Riann N Christian ◽  
Nanette Coetzer ◽  
Hilary Ranson ◽  
Maureen Coetzee ◽  
...  

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Edison J Mavundza ◽  
Rajendra Maharaj ◽  
Jude C Chukwujekwu ◽  
Jeffrey F Finnie ◽  
Johannes Van Staden

1988 ◽  
Vol 153 (S3) ◽  
pp. 47-50 ◽  
Author(s):  
R. F. Bergstrom ◽  
L. Lemberger ◽  
N. A. Farid ◽  
R. L. Wolen

Drugs are discovered by a variety of approaches, which include a systematic evaluation of synthetic compounds, using extensive structure activity relationships. After a lead compound which possesses desirable pharmacological properties is found, through the exhaustive screening of a variety of compounds, a number of congeners are then synthesised and tested, using specific physiological or biochemical models of therapeutic agents. The discovery of fluoxetine involved this complex process, and led to the description in the literature of one of the first selective serotonin uptake inhibitors (Wonget al, 1974); it was subsequently tested clinically, and these studies demonstrated its effectiveness and safety as an antidepressant drug (Chouinard, 1985). This paper reviews the published information relevant to fluoxetine's pharmacology and pharmacokinetics in man.


1987 ◽  
Vol 11 ◽  
pp. 109-116
Author(s):  
V. C. Nielsen

AbstractThe management of pig manures and slurries has not responded to the changes that have occurred in the development of pig farms. Management systems have remained unchanged despite the fact that the majority of pigs (64%) are kept on 10–3% of all pig units. The pressures of heavy applications of manures on restricted areas of land and the large numbers of animals kept in buildings has given rise to environmental pollution by odours and by contamination of water and of the soil.The cause of odour formation in buildings is discussed, together with the effects of dust on odour dispersion. Methods of reducing odours and the effect of straw on odour formation and slurry handling are discussed.Methods of controlling odours from buildings, stores and from manure applied to the land are reviewed and areas which need further research and development are proposed.Environmental pollution by manures and slurries of water and soils and measures to control pollution are reviewed.


Author(s):  
Sara A. Abuelmaali ◽  
Arwa H. Elaagip ◽  
Mohammed A. Basheer ◽  
Ehab A. Frah ◽  
Fayez T. A. Ahmed ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Zalalham Al-Koleeby ◽  
Ahmed El Aboudi ◽  
Mithaq Assada ◽  
Mohamed Al-Hadi ◽  
Mohammed Abdalr Ahman ◽  
...  

Control of malaria vectors in Yemen relies on both indoor residual spraying using carbamate (bendiocarb) and long-lasting pyrethroids-treated nets. This paper reports the results of studies conducted to monitor the insecticide resistance of the main malaria vector, Anopheles arabiensis, to the insecticides currently used in the vector control in four different locations. Susceptibility tests were performed following the WHO test procedures. Two pyrethroids (lambda-cyhalothrin 0.05% and deltamethrin 0.05%) and one carbamate (bendiocarb 0.1%) were tested at diagnostic doses (DD). The five-fold DD of lambda-cyhalothrin and deltamethrin (0.25%) were also used to yield information on the intensity of resistance. Besides, tests with synergists were performed to assess the involvement of detoxifying enzyme in the phenotypic resistance of the populations of An. arabiensis to pyrethroids. The results of the performed susceptibility bioassay showed that the vector is susceptible to bendiocarb and resistant to lambda-cyhalothrin and deltamethrin in the four studied areas. The pyrethroids resistance is solely metabolic. This information could help policy-makers to plan insecticide resistance management. Bendiocarb is still an effective insecticide in the form of IRS. Concerning LLINS, it would be interesting to assess their effectiveness, combining a pyrethroid with PBO for the control of the pyrethroid-resistant malaria vector.


Sign in / Sign up

Export Citation Format

Share Document