scholarly journals Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ying Tian ◽  
Muhammad Rizwan Younis ◽  
Yuxia Tang ◽  
Xiang Liao ◽  
Gang He ◽  
...  

Abstract Background Tumor phototherapy especially photodynamic therapy (PDT) or photothermal therapy (PTT), has been considered as an attractive strategy to elicit significant immunogenic cell death (ICD) at an optimal tumor retention of PDT/PTT agents. Heptamethine cyanine dye (IR-780), a promising PDT/PTT agent, which can be used for near-infrared (NIR) fluorescence/photoacoustic (PA) imaging guided tumor phototherapy, however, the strong hydrophobicity, short circulation time, and potential toxicity in vivo hinder its biomedical applications. To address this challenge, we developed mesoporous polydopamine nanoparticles (MPDA) with excellent biocompatibility, PTT efficacy, and PA imaging ability, facilitating an efficient loading and protection of hydrophobic IR-780. Results The IR-780 loaded MPDA (IR-780@MPDA) exhibited high loading capacity of IR-780 (49.7 wt%), good physiological solubility and stability, and reduced toxicity. In vivo NIR fluorescence and PA imaging revealed high tumor accumulation of IR-780@MPDA. Furthermore, the combined PDT/PTT of IR-780@MPDA could induce ICD, triggered immunotherapeutic response to breast tumor by the activation of cytotoxic T cells, resulting in significant suppression of tumor growth in vivo. Conclusion This study demonstrated that the as-developed compact and biocompatible platform could induce combined PDT/PTT and accelerate immune activation via excellent tumor accumulation ability, offering multimodal tumor theranostics with negligible systemic toxicity. Graphical Abstract

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hanzhang Zhu ◽  
Weijiang Zhou ◽  
Yafeng Wan ◽  
Ke Ge ◽  
Jun Lu ◽  
...  

Abstract Background The present study aims to develop a nanoparticle encapsulating doxorubicin (DOX) and programmed death-ligand 1 (PD-L1) siRNA and evaluate its anti-tumor effects on hepatoma carcinoma (HCC). Methods Nanoparticle encapsulating DOX and PD-L1 siRNA (NPDOX/siPD-L1) was characterized by dynamic light scattering and transmission electron microscopy. Flow cytometry was applied to analyze cell populations, NPDOX/siPD-L1 internalization, and cell apoptosis. Real-Time (RT)-quantitative reverse transcription (qPCR) and western blotting were used to determine the mRNA and protein levels, respectively. Released ATP was determined using ATP determination kit and cytokines were determined using specific ELISAs. A tumor-bearing animal model was established to evaluate the anti-tumor effects of NPDOX/siPD-L1. Results Treatment of NPDOX/siPD-L1 induced immunogenic cell death (ICD) and PD-L1 overexpression in HCC. In vivo study demonstrated that intravenously injection of NPDOX/siPD-L1 significantly inhibited the tumor volume and PD-L1 expressions of tumor tissue in the H22 tumor-bearing animal model. Besides, the treatment of NPDOX/siPD-L1 also regulated the populations of matured dendritic cells and cytotoxic T cells and the productions of cytokines in the tumor tissues. Conclusion Taken together, NPDOX/siPD-L1 showed significant anti-tumor effects on HCC by the induction of ICD and inhibition of PD-L1 overexpression.


Small ◽  
2019 ◽  
Vol 15 (48) ◽  
pp. 1901930 ◽  
Author(s):  
Fumi Yoshino ◽  
Tsukuru Amano ◽  
Yajuan Zou ◽  
Jian Xu ◽  
Fuminori Kimura ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Zoltan Szucs ◽  
James Joseph ◽  
Tim J. Larkin ◽  
Bangwen Xie ◽  
Sarah E. Bohndiek ◽  
...  

Abstract Background Ductal carcinoma in situ (DCIS) is a non-invasive form of early breast cancer, with a poorly understood natural history of invasive transformation. Necrosis is a well-recognized adverse prognostic feature of DCIS, and non-invasive detection of its presence and spatial extent could provide information not obtainable by biopsy. We describe here imaging of the distribution and extent of comedo-type necrosis in a model of human DCIS using C2Am, an imaging agent that binds to the phosphatidylserine exposed by necrotic cells. Methods We used an established xenograft model of human DCIS that mimics the histopathological features of the disease. Planar near-infrared and optoacoustic imaging, using fluorescently labeled C2Am, were used to image non-invasively the presence and extent of lesion necrosis. Results C2Am showed specific and sensitive binding to necrotic areas in DCIS tissue, detectable both in vivo and ex vivo. The imaging signal generated in vivo using near-infrared (NIR) fluorescence imaging was up to 6-fold higher in DCIS lesions than in surrounding fat pad or skin tissue. There was a correlation between the C2Am NIR fluorescence (Pearson R = 0.783, P = 0.0125) and optoacoustic signals (R > 0.875, P < 0.022) in the DCIS lesions in vivo and the corresponding levels of cell death detected histologically. Conclusions C2Am is a targeted multi-modal imaging agent that could complement current anatomical imaging methods for detecting DCIS. Imaging the presence and spatial extent of necrosis may give better prognostic information than that obtained by biopsy alone.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1651
Author(s):  
Aimee J. Marko ◽  
Ballav M. Borah ◽  
Kevin E. Siters ◽  
Joseph R. Missert ◽  
Anurag Gupta ◽  
...  

This report presents the synthesis and folate receptor target-specificity of amino-functionalized polyacrylamide nanoparticles (AFPAA NPs) for near-infrared (NIR) fluorescence imaging of cancer. For the synthesis of desired nano-constructs, the AFPAA NPs (hereafter referred to as NPs) were reacted with a NIR cyanine dye (CD) bearing carboxylic acid functionality by following our previously reported approach, and the resulting conjugate (NP-CD) on further reaction with folic acid (FA) resulted in a new nano-construct, FA-NP-CD, which demonstrated significantly higher uptake in folate receptor-positive breast cancer cells (KB+) and in folate receptor over-expressed tumors in vivo. The target-specificity of these nanoparticles was further confirmed by inhibition assay in folate receptor-positive (KB+) and -negative (HT-1080) cell lines. To show the advantages of polyacrylamide (PAA)-based NPs in folate receptor target-specificity, the CD used in preparing the FA-NP-CD construct was also reacted with folic acid alone and the synthetic conjugate (CD-FA) was also investigated for its target-specificity. Interestingly, in contrast to NPs (FA-NP-CD), the CD-FA conjugate did not show any significant in vitro or in vivo specificity toward folate receptors, showing the advantages of PAA-based nanotechnology in delivering the desired agent to tumor cells.


Small ◽  
2020 ◽  
Vol 16 (28) ◽  
pp. 2003468
Author(s):  
Fumi Yoshino ◽  
Tsukuru Amano ◽  
Yajuan Zou ◽  
Jian Xu ◽  
Fuminori Kimura ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 130
Author(s):  
Michal Kielbik ◽  
Izabela Szulc-Kielbik ◽  
Magdalena Klink

Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an “eat me” signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor’s antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant disease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients.


2015 ◽  
Vol 27 (2) ◽  
pp. 404-413 ◽  
Author(s):  
Kazuhide Sato ◽  
Alexander P. Gorka ◽  
Tadanobu Nagaya ◽  
Megan S. Michie ◽  
Roger R. Nani ◽  
...  

Author(s):  
Takahiro Yamazaki ◽  
Aitziber Buqué ◽  
Marissa Rybstein ◽  
Jonathan Chen ◽  
Ai Sato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document