scholarly journals Dietary Aronia melanocarpa extract enhances mTORC1 signaling, but has no effect on protein synthesis and protein breakdown-related signaling, in response to resistance exercise in rat skeletal muscle

Author(s):  
Yuhei Makanae ◽  
Satoru Ato ◽  
Kohei Kido ◽  
Satoshi Fujita

Abstract Background Ursolic acid altered muscle protein metabolism in normal and resting conditions after acute resistance exercise, suggesting that eating fruits rich in ursolic acid could enhance muscle protein synthesis and decrease muscle degradation. Aronia melanocarpa, a member of the family Rosaceae and native to North America and Eastern Canada, is rich in ursolic acid. In this study, we examined the effects of A. melanocarpa extract (AME) supplementation on the mTORC1 signaling pathway and muscle degradation-related factors in rats, both alone and in combination with resistance exercise. Methods Male Sprague-Dawley rats were divided into AME and normal chow (NOR) groups. AME group was fed chow providing a dose of 3 g/kg of AME and 115 mg/kg of ursolic acid for 7 days, whereas NOR rats were fed normal powder chow. The right gastrocnemius muscle of each animal was isometrically exercised (5 sets of ten 3-s contractions, with a 7-s interval between contractions and 3-min rest intervals between sets), while the left gastrocnemius muscle served as an internal control. Western blotting and real-time polymerase chain reaction were used to assess expression of factors involved in the mTORC1 signaling pathway and muscle degradation. Results At 1 h after resistance exercise, phosphorylation of ERK1/2 was significantly increased by AME consumption. At 6 h after resistance exercise, AME consumption significantly increased the phosphorylation of Akt, p70S6K, rpS6, and AMPK. It also increased MAFbx expression. Furthermore, AME significantly increased the phosphorylation of p70S6K and rpS6 in response to resistance exercise. However, AME did not increase muscle protein synthesis (MPS) after resistance exercise. AME did not affect the expression of any of the mediators of protein degradation, with the exception of MAFbx. Conclusions Dietary AME enhanced mTORC1 activation in response to resistance exercise without increasing MPS. Moreover, it neither accelerated muscle protein degradation nor otherwise negatively affected protein metabolism. Further study is needed to clarify the effect of the combination of AME and chronic resistance training on muscle hypertrophy.

2020 ◽  
Vol 128 (4) ◽  
pp. 830-837 ◽  
Author(s):  
Yuki Maruyama ◽  
Chisaki Ikeda ◽  
Koki Wakabayashi ◽  
Satoru Ato ◽  
Riki Ogasawara

High-intensity muscle contraction (HiMC) is known to induce muscle protein synthesis, a process in which mechanistic target of rapamycin (mTOR) is reported to play a critical role. However, the mechanistic details have not been completely elucidated. Here, we investigated whether Akt plays a role in regulating HiMC-induced mTORC1 activation and muscle protein synthesis using a rodent model of resistance exercise and MK2206 (an Akt kinase inhibitor). The right gastrocnemius muscle of male C57BL/6J mice aged 10 wk was isometrically contracted via percutaneous electrical stimulation (100 Hz, 5 sets of 10 3-s contractions, 7-s rest between contractions, and 3-min rest between sets), while the left gastrocnemius muscle served as a control. Vehicle or MK2206 was injected intraperitoneally 6 h before contraction. MK2206 inhibited both resting and HiMC-induced phosphorylation of Akt1 Ser-473 and Akt2 Ser-474. MK2206 also inhibited the resting phosphorylation of p70S6K and 4E-BP1, which are downstream targets of mTORC1; however, it did not inhibit the HiMC-induced increase in phosphorylation of these targets. Similarly, MK2206 inhibited the resting muscle protein synthesis, but not the resistance exercise-induced muscle protein synthesis. On the basis of these observations, we conclude that although Akt2 regulates resting mTORC1 activity and muscle protein synthesis, HiMC-induced increases in mTORC1 activity and muscle protein synthesis are Akt-independent processes. NEW & NOTEWORTHY Akt is well known to be an upstream regulator of mechanistic target of rapamycin (mTOR) and has three isoforms in mammals, namely, Akt1, Akt2, and Akt3. We found that high-intensity muscle contraction (HiMC) increases Akt1 and Akt2 phosphorylation; however, HiMC-induced increases in mTORC1 activity and muscle protein synthesis are Akt-independent processes.


2013 ◽  
Vol 305 (6) ◽  
pp. E760-E765 ◽  
Author(s):  
Riki Ogasawara ◽  
Koji Sato ◽  
Kazuhiko Higashida ◽  
Koichi Nakazato ◽  
Satoshi Fujita

A recent study identified ursolic acid (UA) as a potent stimulator of muscle protein anabolism via PI3K/Akt signaling, thereby suggesting that UA can increase Akt-independent mTOR complex 1 (mTORC1) activation induced by resistance exercise via Akt signaling. The purpose of the present study was to investigate the effect of UA on resistance exercise-induced mTORC1 activation. The right gastrocnemius muscle of male Sprague-Dawley rats aged 11 wk was isometrically exercised via percutaneous electrical stimulation (stimulating ten 3-s contractions per set for 5 sets), while the left gastrocnemius muscle served as the control. UA or placebo (PLA; corn oil only) was injected intraperitoneally immediately after exercise. The rats were killed 1 or 6 h after the completion of exercise and the target tissues removed immediately. With placebo injection, the phosphorylation of p70S6K at Thr389 increased 1 h after resistance exercise but attenuated to the control levels 6 h after the exercise. On the other hand, the augmented phosphorylation of p70S6K was maintained even 6 h after exercise when UA was injected immediately after exercise. A similar trend of prolonged phosphorylation was observed in PRAS40 Thr246, whereas UA alone or resistance exercise alone did not alter its phosphorylation level at 6 h after intervention. These results indicate that UA is able to sustain resistance exercise-induced mTORC1 activity.


2007 ◽  
Vol 39 (Supplement) ◽  
pp. S82-S83
Author(s):  
Hans C. Dreyer ◽  
Micah J. Drummond ◽  
Satoshi Fujita ◽  
Erin L. Glynn ◽  
Bart Pennings ◽  
...  

1990 ◽  
Vol 69 (5) ◽  
pp. 1709-1717 ◽  
Author(s):  
T. S. Wong ◽  
F. W. Booth

Previous results by use of a model of resistance exercise consisting of nonvoluntary electrical contraction of rat skeletal muscle have shown that significant gastrocnemius muscle enlargement was produced after 16 wk of chronic concentric resistance training with progressively increased weights but not after the same training program without weights (J. Appl. Physiol. 65: 950-954, 1988). In the present study we examined whether this differential effect on muscle mass between high- and low-resistance exercise is mediated through differential actions on muscle protein synthesis rates. In addition, we determined whether accumulation of specific mRNA quantities had a primary role in the protein synthesis response to this type of exercise. The data revealed that as little as 8 min of total contractile duration increased gastrocnemius protein synthesis rates by nearly 50%. Contrary to our hypothesis, post-exercise protein synthesis rates do not appear to be differentially regulated by the resistance imposed on the muscle during exercise but rather by the number of repetitions performed during the acute bout. This observation, the failure of high-frequency chronic training to produce gastrocnemius enlargement, and the relatively minor effects on mRNA levels collectively suggest that translational and posttranslational mechanisms, including protein degradation, may be the principal processes by which gastrocnemius protein expression is regulated in this model of stimulated concentric exercise.


2012 ◽  
Vol 112 (9) ◽  
pp. 1520-1528 ◽  
Author(s):  
David M. Gundermann ◽  
Christopher S. Fry ◽  
Jared M. Dickinson ◽  
Dillon K. Walker ◽  
Kyle L. Timmerman ◽  
...  

Blood flow restriction (BFR) to contracting skeletal muscle during low-intensity resistance exercise training increases muscle strength and size in humans. However, the mechanism(s) underlying these effects are largely unknown. We have previously shown that mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis (MPS) are stimulated following an acute bout of BFR exercise. The purpose of this study was to test the hypothesis that reactive hyperemia is the mechanism responsible for stimulating mTORC1 signaling and MPS following BFR exercise. Six young men (24 ± 2 yr) were used in a randomized crossover study consisting of two exercise trials: low-intensity resistance exercise with BFR (BFR trial) and low-intensity resistance exercise with sodium nitroprusside (SNP), a pharmacological vasodilator infusion into the femoral artery immediately after exercise to simulate the reactive hyperemia response after BFR exercise (SNP trial). Postexercise mixed-muscle fractional synthetic rate from the vastus lateralis increased by 49% in the BFR trial ( P < 0.05) with no change in the SNP trial ( P > 0.05). BFR exercise increased the phosphorylation of mTOR, S6 kinase 1, ribosomal protein S6, ERK1/2, and Mnk1-interacting kinase 1 ( P < 0.05) with no changes in mTORC1 signaling in the SNP trial ( P > 0.05). We conclude that reactive hyperemia is not a primary mechanism for BFR exercise-induced mTORC1 signaling and MPS. Further research is necessary to elucidate the cellular mechanism(s) responsible for the increase in mTOR signaling, MPS, and hypertrophy following acute and chronic BFR exercise.


2009 ◽  
Vol 106 (4) ◽  
pp. 1374-1384 ◽  
Author(s):  
Micah J. Drummond ◽  
Hans C. Dreyer ◽  
Christopher S. Fry ◽  
Erin L. Glynn ◽  
Blake B. Rasmussen

In this review we discuss current findings in the human skeletal muscle literature describing the acute influence of nutrients (leucine-enriched essential amino acids in particular) and resistance exercise on muscle protein synthesis and mammalian target of rapamycin complex 1 (mTORC1) signaling. We show that essential amino acids and an acute bout of resistance exercise independently stimulate human skeletal muscle protein synthesis. It also appears that ingestion of essential amino acids following resistance exercise leads to an even larger increase in the rate of muscle protein synthesis compared with the independent effects of nutrients or muscle contraction. Until recently the cellular mechanisms responsible for controlling the rate of muscle protein synthesis in humans were unknown. In this review, we highlight new studies in humans that have clearly shown the mTORC1 signaling pathway is playing an important regulatory role in controlling muscle protein synthesis in response to nutrients and/or muscle contraction. We propose that essential amino acid ingestion shortly following a bout of resistance exercise is beneficial in promoting skeletal muscle growth and may be useful in counteracting muscle wasting in a variety of conditions such as aging, cancer cachexia, physical inactivity, and perhaps during rehabilitation following trauma or surgery.


2010 ◽  
Vol 42 ◽  
pp. 63
Author(s):  
Christopher S. Fry ◽  
Micah J. Drummond ◽  
Erin L. Glynn ◽  
Jared M. Dickinson ◽  
David M. Gundermann ◽  
...  

2014 ◽  
Vol 306 (10) ◽  
pp. E1155-E1162 ◽  
Author(s):  
Riki Ogasawara ◽  
Koji Sato ◽  
Kenji Matsutani ◽  
Koichi Nakazato ◽  
Satoshi Fujita

Concurrent training, a combination of endurance (EE) and resistance exercise (RE) performed in succession, may compromise the muscle hypertrophic adaptations induced by RE alone. However, little is known about the molecular signaling interactions underlying the changes in skeletal muscle adaptation during concurrent training. Here, we used an animal model to investigate whether EE before or after RE affects the molecular signaling associated with muscle protein synthesis, specifically the interaction between RE-induced mammalian target of rapamycin complex 1 (mTORC1) signaling and EE-induced AMP-activated protein kinase (AMPK) signaling. Male Sprague-Dawley rats were divided into five groups: an EE group (treadmill, 25 m/min, 60 min), an RE group (maximum isometric contraction via percutaneous electrical stimulation for 3 × 10 s, 5 sets), an EE before RE group, an EE after RE group, and a nonexercise control group. Phosphorylation of p70S6K, a marker of mTORC1 activity, was significantly increased 3 h after RE in both the EE before RE and EE after RE groups, but the increase was smaller in latter. Furthermore, protein synthesis was greatly increased 6 h after RE in the EE before RE group. Increases in the phosphorylation of AMPK and Raptor were observed only in the EE after RE group. Akt and mTOR phosphorylation were increased in both groups, with no between-group differences. Our results suggest that the last bout of exercise dictates the molecular responses and that mTORC1 signaling induced by any prior bout of RE may be downregulated by a subsequent bout of EE.


2019 ◽  
Vol 9 (4) ◽  
pp. 651-656 ◽  
Author(s):  
K. T. Erimbetov ◽  
O. V. Obvintseva ◽  
A. V. Fedorova ◽  
R. A. Zemlyanoy ◽  
A. G. Solovieva

This review highlights the current state of phenotypic mechanisms of regulation of muscle protein metabolism in animals. Since the skeletal muscle represents 40–50% of body mass in mammals it is a critical regulator of overall metabolism. Therefore, an understanding of the processes involved in the postnatal increase in muscle mass, with associated accumulation of protein, is fundamental. Throughout life, a delicate balance exists between protein synthesis and degradation that is essential for growth and normal health of humans and animals. Signaling pathways coordinate muscle protein balance. Anabolic and catabolic stimuli are integrated through the PKB/Akt-mTORC1 signaling to regulate mechanisms that control muscle protein synthesis and breakdown. At an early periods of intensive growth, muscle mass is stimulated by an increase in protein synthesis at the level of mRNA translation. Throughout the life, proteolytic processes including autophagy lysosomal system, ubiquitin proteasome pathway, calcium-dependent calpains and cysteine protease caspase enzyme cascade influence the growth of muscle mass. Several signal transmission networks direct and coordinate these processes along with quality control mechanisms to maintain protein homeostasis (proteostasis). Genetic factors, hormones, amino acids, phytoecdysteroids, and rhodanines affect the protein metabolism via signaling pathways, changing the ability and / or efficiency of muscle growth.


Sign in / Sign up

Export Citation Format

Share Document