scholarly journals Phenotypic regulation of animal skeletal muscle protein metabolism

2019 ◽  
Vol 9 (4) ◽  
pp. 651-656 ◽  
Author(s):  
K. T. Erimbetov ◽  
O. V. Obvintseva ◽  
A. V. Fedorova ◽  
R. A. Zemlyanoy ◽  
A. G. Solovieva

This review highlights the current state of phenotypic mechanisms of regulation of muscle protein metabolism in animals. Since the skeletal muscle represents 40–50% of body mass in mammals it is a critical regulator of overall metabolism. Therefore, an understanding of the processes involved in the postnatal increase in muscle mass, with associated accumulation of protein, is fundamental. Throughout life, a delicate balance exists between protein synthesis and degradation that is essential for growth and normal health of humans and animals. Signaling pathways coordinate muscle protein balance. Anabolic and catabolic stimuli are integrated through the PKB/Akt-mTORC1 signaling to regulate mechanisms that control muscle protein synthesis and breakdown. At an early periods of intensive growth, muscle mass is stimulated by an increase in protein synthesis at the level of mRNA translation. Throughout the life, proteolytic processes including autophagy lysosomal system, ubiquitin proteasome pathway, calcium-dependent calpains and cysteine protease caspase enzyme cascade influence the growth of muscle mass. Several signal transmission networks direct and coordinate these processes along with quality control mechanisms to maintain protein homeostasis (proteostasis). Genetic factors, hormones, amino acids, phytoecdysteroids, and rhodanines affect the protein metabolism via signaling pathways, changing the ability and / or efficiency of muscle growth.

Author(s):  
Takahiro Mori ◽  
Satoru Ato ◽  
Jonas R. Knudsen ◽  
Carlos Henriquez-Olguin ◽  
Zhencheng Li ◽  
...  

High-intensity muscle contractions (HiMC) are known to increase c-Myc expression which is known to stimulate ribosome biogenesis and protein synthesis in most cells. However, while c-Myc mRNA transcription and c-Myc mRNA translation have been shown to be upregulated following resistance exercise concomitantly with increased ribosome biogenesis, this has not been tested directly. We investigated the effect of adeno-associated virus (AAV)-mediated c-Myc overexpression, with or without fasting or percutaneous electrical stimulation-induced HiMC, on ribosome biogenesis and protein synthesis in adult mouse skeletal muscles. AAV-mediated overexpression of c-Myc in mouse skeletal muscles for 2 weeks increased the DNA polymerase subunit POL1 mRNA, 45S-pre-rRNA, total RNA, and muscle protein synthesis without altering mechanistic target of rapamycin complex 1 (mTORC1) signaling under both ad libitum and fasted conditions. RNA-seq analyses revealed that c-Myc overexpression mainly regulated ribosome biogenesis-related biological processes. The protein synthesis response to c-Myc overexpression mirrored the response with HiMC. No additional effect of combining c-Myc overexpression and HiMC was observed. Our results suggest that c-Myc overexpression is sufficient to stimulate skeletal muscle ribosome biogenesis and protein synthesis without activation of mTORC1. Therefore, the HiMC-induced increase in c-Myc may contribute to ribosome biogenesis and increased protein synthesis following HiMC.


2001 ◽  
Vol 281 (1) ◽  
pp. R133-R139 ◽  
Author(s):  
S. E. Samuels ◽  
A. L. Knowles ◽  
T. Tilignac ◽  
E. Debiton ◽  
J. C. Madelmont ◽  
...  

The influence of cancer cachexia and chemotherapy and subsequent recovery of skeletal muscle protein mass and turnover was investigated in mice. Cancer cachexia was induced using colon 26 adenocarcinoma, which is characteristic of the human condition, and can be cured with 100% efficacy using an experimental nitrosourea, cystemustine (C6H12CIN3O4S). Reduced food intake was not a factor in these studies. Three days after cachexia began, healthy and tumor-bearing mice were given a single intraperitoneal injection of cystemustine (20 mg/kg). Skeletal muscle mass in tumor-bearing mice was 41% lower ( P < 0.05) than in healthy mice 2 wk after cachexia began. Skeletal muscle wasting was mediated initially by decreased protein synthesis (−38%; P < 0.05) and increased degradation (+131%; P < 0.05); later wasting resulted solely from decreased synthesis (∼−54 to −69%; P < 0.05). Acute cytotoxicity of chemotherapy did not appear to have an important effect on skeletal muscle protein metabolism in either healthy or tumor-bearing mice. Recovery began 2 days after treatment; skeletal muscle mass was only 11% lower than in healthy mice 11 days after chemotherapy. Recovery of skeletal muscle mass was affected initially by decreased protein degradation (−80%; P < 0.05) and later by increased protein synthesis (+46 to +73%; P < 0.05) in cured compared with healthy mice. This study showed that skeletal muscle wasted from cancer cachexia and after chemotherapeutic treatment is able to generate a strong anabolic response by making powerful changes to protein synthesis and degradation.


2010 ◽  
Vol 24 (6) ◽  
pp. 1306-1306
Author(s):  
Kyle L. Timmerman ◽  
Jessica L. Lee ◽  
Hans C. Dreyer ◽  
Shaheen Dhanani ◽  
Erin L. Glynn ◽  
...  

Abstract Objective: Our objective was to determine whether endothelial-dependent vasodilation is an essential mechanism by which insulin stimulates human skeletal muscle protein synthesis and anabolism. Subjects: Subjects were healthy young adults (n = 14) aged 31 ± 2 yr. Design: Subjects were studied at baseline and during local leg infusion of insulin alone (control, n = 7) or insulin plus the nitric oxide synthase inhibitor NG-monomethyl-l-arginine (L-NMMA, n = 7) to prevent insulin-induced vasodilation. Methods: We measured skeletal muscle protein metabolism with stable isotope tracers, blood flow with indocyanine green, capillary recruitment with contrast enhanced ultrasound, glucose metabolism with stable isotope tracers, and phosphorylation of proteins associated with insulin (Akt) and amino acid-induced mammalian target of rapamycin(mTOR) complex 1 (mTORC1) signaling (mTOR, S6 kinase 1, and eukaryotic initiation factor 4Ebinding protein 1) with Western blot analysis. Results: No basal differences between groups were detected. During insulin infusion, blood flow and capillary recruitment increased in the control (P &lt; 0.05) group only; Akt phosphorylation and glucose uptake increased in both groups (P &lt; 0.05), with no group differences; and mTORC1 signaling increased more in control (P &lt; 0.05) than in l-NMMA. Phenylalanine net balance increased (P &lt; 0.05) in both groups, but with opposite mechanisms: increased protein synthesis (basal, 0.051 ± 0.006%/h; insulin, 0.077 ± 0.008%/h; P &lt; 0.05) with no change in proteolysis in control and decreased proteolysis (P &lt; 0.05) with no change in synthesis (basal, 0.061 ± 0.004%/h; insulin, 0.050 ± 0.006%/h; P value not significant) in l-NMMA. Conclusions: Endothelial-dependent vasodilation and the consequent increase in nutritive flow and mTORC1 signaling, rather than Akt signaling, are fundamental mechanisms by which insulin stimulates muscle protein synthesis in humans. Additionally, these data underscore that insulin modulates skeletal muscle proteolysis according to its effects on nutritive flow.


1998 ◽  
Vol 156 (1) ◽  
pp. 83-89 ◽  
Author(s):  
D Dardevet ◽  
C Sornet ◽  
I Savary ◽  
E Debras ◽  
P Patureau-Mirand ◽  
...  

This study was performed to assess the effect of glucocorticoids (dexamethasone) on insulin- and IGF-I-regulated muscle protein metabolism in adult and old rats. Muscle atrophy occurred more rapidly in old rats, and recovery of muscle mass was impaired when compared with adults. Muscle wasting resulted mainly from increased protein breakdown in adult rat but from depressed protein synthesis in the aged animal. Glucocorticoid treatment significantly decreased the stimulatory effect of insulin and IGF-I on muscle protein synthesis in adult rats by 25.9 and 58.1% respectively. In old rats, this effect was even greater, being 49.3 and 100% respectively. With regard to muscle proteolysis, glucocorticoids blunted the anti-proteolytic action of insulin and IGF-I in both age groups. During the recovery period, adult rats reversed the glucocorticoid-induced resistance of muscle protein metabolism within 3 days, at which time old rats still exhibited the decrease in insulin-regulated proteolysis. In conclusion, the higher sensitivity of old rat muscle to glucocorticoids may in part result from the greater modification of the effects of insulin and IGF-I on muscle protein metabolism. These responses to glucocorticoids in old rats may be associated with the emergence of muscle atrophy with advancing age.


2001 ◽  
Vol 11 (s1) ◽  
pp. S150-S163 ◽  
Author(s):  
Peter A. Farrell

Skeletal muscle proteins are constantly being synthesized and degraded, and the net balance between synthesis and degradation determines the resultant muscle mass. Biochemical pathways that control protein synthesis are complex, and the following must be considered: gene transcription, mRNA splicing, and transport to the cytoplasm; specific amino acyl-tRNA, messenger (mRNA), ribosomal (rRNA) availability; amino acid availability within the cell; the hormonal milieu; rates of mRNA translation; packaging in vesicles for some types of proteins; and post-translational processing such as glycation and phosphorylation/dephosphorylation. Each of these processes is responsive to the need for greater or lesser production of new proteins, and many states such as sepsis, uncontrolled diabetes, prolonged bed-rest, aging, chronic alcohol treatment, and starvation cause marked reductions in rates of skeletal muscle protein synthesis. In contrast, acute and chronic resistance exercise cause elevations in rates of muscle protein synthesis above rates found in nondiseased rested organisms, which are normally fed. Resistance exercise may be unique in this capacity. This chapter focuses on studies that have used exercise to elucidate mechanisms that explain elevations in rates of protein synthesis. Very few studies have investigated the effects of aging on these mechanisms; however, the literature that is available is reviewed.


2005 ◽  
Vol 288 (5) ◽  
pp. E914-E921 ◽  
Author(s):  
Jeffery Escobar ◽  
Jason W. Frank ◽  
Agus Suryawan ◽  
Hanh V. Nguyen ◽  
Scot R. Kimball ◽  
...  

Protein synthesis in skeletal muscle of adult rats increases in response to oral gavage of supraphysiological doses of leucine. However, the effect on protein synthesis of a physiological rise in plasma leucine has not been investigated in neonates, an anabolic population highly sensitive to amino acids and insulin. Therefore, in the current study, fasted pigs were infused intra-arterially with leucine (0, 200, or 400 μmol·kg−1·h−1), and protein synthesis was measured after 60 or 120 min. Protein synthesis was increased in muscle, but not in liver, at 60 min. At 120 min, however, protein synthesis returned to baseline levels in muscle but was reduced below baseline values in liver. The increase in protein synthesis in muscle was associated with increased plasma leucine of 1.5- to 3-fold and no change in plasma insulin. Leucine infusion for 120 min reduced plasma essential amino acid levels. Phosphorylation of eukaryotic initiation factor (eIF)-4E-binding protein-1 (4E-BP1), ribosomal protein (rp) S6 kinase, and rpS6 was increased, and the amount of eIF4E associated with its repressor 4E-BP1 was reduced after 60 and 120 min of leucine infusion. No change in these biomarkers of mRNA translation was observed in liver. Thus a physiological increase in plasma leucine stimulates protein synthesis in skeletal muscle of neonatal pigs in association with increased eIF4E availability for eIF4F assembly. This response appears to be insulin independent, substrate dependent, and tissue specific. The results suggest that the branched-chain amino acid leucine can act as a nutrient signal to stimulate protein synthesis in skeletal muscle of neonates.


2009 ◽  
Vol 106 (6) ◽  
pp. 2040-2048 ◽  
Author(s):  
René Koopman ◽  
Luc J. C. van Loon

Aging is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk of developing chronic metabolic disease. The age-related loss of skeletal muscle mass is attributed to a disruption in the regulation of skeletal muscle protein turnover, resulting in an imbalance between muscle protein synthesis and degradation. As basal (fasting) muscle protein synthesis rates do not seem to differ substantially between the young and elderly, many research groups have started to focus on the muscle protein synthetic response to the main anabolic stimuli, i.e., food intake and physical activity. Recent studies suggest that the muscle protein synthetic response to food intake is blunted in the elderly. The latter is now believed to represent a key factor responsible for the age-related decline in skeletal muscle mass. Physical activity and/or exercise stimulate postexercise muscle protein accretion in both the young and elderly. However, the latter largely depends on the timed administration of amino acids and/or protein before, during, and/or after exercise. Prolonged resistance type exercise training represents an effective therapeutic strategy to augment skeletal muscle mass and improve functional performance in the elderly. The latter shows that the ability of the muscle protein synthetic machinery to respond to anabolic stimuli is preserved up to very old age. Research is warranted to elucidate the interaction between nutrition, exercise, and the skeletal muscle adaptive response. The latter is needed to define more effective strategies that will maximize the therapeutic benefits of lifestyle intervention in the elderly.


2021 ◽  
Vol 11 (3) ◽  
pp. 14-23
Author(s):  
Carina Sousa Santos ◽  
Eudes Souza Oliveira Júnior ◽  
Marcus James Lopes de Sá ◽  
Elizabethe Adriana Esteves

Proper maintenance of skeletal muscle mass is essential to prevent sarcopenia and ensure health and quality of life as aging progress. The two determinants of muscle protein synthesis are the increased load on skeletal muscle through resistance exercise and protein intake. For an effective result of maintaining or increasing muscle mass, it is relevant to consider the quantitative and adequate intake of protein, and the dietary source of protein since the plant-based protein has differences in comparison to animals that limit its anabolic capacity. Given the increase in vegetarianism and the elderly population, which consumes fewer food sources of animal protein, the importance of understanding how protein of plant-based protein can sustain muscle protein synthesis in the long term when associated with resistance exercise is justified, as well as the possibilities of dietary adequacy in the face of this demand.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1596 ◽  
Author(s):  
Insaf Berrazaga ◽  
Jérôme Salles ◽  
Karima Laleg ◽  
Christelle Guillet ◽  
Véronique Patrac ◽  
...  

The mechanisms that are responsible for sarcopenia are numerous, but the altered muscle protein anabolic response to food intake that appears with advancing age plays an important role. Dietary protein quality needs to be optimized to counter this phenomenon. Blending different plant proteins is expected to compensate for the lower anabolic capacity of plant-based when compared to animal-based protein sources. The objective of this work was to evaluate the nutritional value of pasta products that were made from a mix of wheat semolina and faba bean, lentil, or split pea flour, and to assess their effect on protein metabolism as compared to dietary milk proteins in old rats. Forty-three old rats have consumed for six weeks isoproteic and isocaloric diets containing wheat pasta enriched with 62% to 79% legume protein (depending on the type) or milk proteins, i.e., casein or soluble milk proteins (SMP). The protein digestibility of casein and SMP was 5% to 14% higher than legume-enriched pasta. The net protein utilization and skeletal muscle protein synthesis rate were equivalent either in rats fed legume-enriched pasta diets or those fed casein diet, but lower than in rats fed SMP diet. After legume-enriched pasta intake, muscle mass, and protein accretion were in the same range as in the casein and SMP groups. Mixed wheat-legume pasta could be a nutritional strategy for enhancing the protein content and improving the protein quality, i.e., amino acid profile, of this staple food that is more adequate for maintaining muscle mass, especially for older individuals.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3810
Author(s):  
Dean G. Campelj ◽  
Cara A. Timpani ◽  
Aaron C. Petersen ◽  
Alan Hayes ◽  
Craig A. Goodman ◽  
...  

Chemotherapy-induced muscle wasting and dysfunction is a contributing factor to cachexia alongside cancer and increases the risk of morbidity and mortality. Here, we investigate the effects of the chemotherapeutic agent irinotecan (IRI) on skeletal muscle mass and function and whether BGP-15 (a poly-(ADP-ribose) polymerase-1 (PARP-1) inhibitor and heat shock protein co-inducer) adjuvant therapy could protect against IRI-induced skeletal myopathy. Healthy 6-week-old male Balb/C mice (n = 24; 8/group) were treated with six intraperitoneal injections of either vehicle, IRI (30 mg/kg) or BGP-15 adjuvant therapy (IRI+BGP; 15 mg/kg) over two weeks. IRI reduced lean and tibialis anterior mass, which were attenuated by IRI+BGP treatment. Remarkably, IRI reduced muscle protein synthesis, while IRI+BGP reduced protein synthesis further. These changes occurred in the absence of a change in crude markers of mammalian/mechanistic target of rapamycin (mTOR) Complex 1 (mTORC1) signaling and protein degradation. Interestingly, the cytoskeletal protein dystrophin was reduced in both IRI- and IRI+BGP-treated mice, while IRI+BGP treatment also decreased β-dystroglycan, suggesting significant remodeling of the cytoskeleton. IRI reduced absolute force production of the soleus and extensor digitorum longus (EDL) muscles, while IRI+BGP rescued absolute force production of the soleus and strongly trended to rescue force output of the EDL (p = 0.06), which was associated with improvements in mass. During the fatiguing stimulation, IRI+BGP-treated EDL muscles were somewhat susceptible to rupture at the musculotendinous junction, likely due to BGP-15’s capacity to maintain the rate of force development within a weakened environment characterized by significant structural remodeling. Our paradoxical data highlight that BGP-15 has some therapeutic advantage by attenuating IRI-induced skeletal myopathy; however, its effects on the remodeling of the cytoskeleton and extracellular matrix, which appear to make fast-twitch muscles more prone to tearing during contraction, could suggest the induction of muscular dystrophy and, thus, require further characterization.


Sign in / Sign up

Export Citation Format

Share Document