scholarly journals Acute and chronic effects of Rhaponticum carthamoides and Rhodiola rosea extracts supplementation coupled to resistance exercise on muscle protein synthesis and mechanical power in rats

Author(s):  
Rémi Roumanille ◽  
Barbara Vernus ◽  
Thomas Brioche ◽  
Vincent Descossy ◽  
Christophe Tran Van Ba ◽  
...  

Abstract Background Owing to its strength-building and adaptogenic properties, Rhaponticum carthamoides (Rha) has been commonly used by elite Soviet and Russian athletes. Rhodiola rosea (Rho) is known to reduce physical and mental fatigue and improve endurance performance. However, the association of these two nutritional supplements with resistance exercise performance has never been tested. Resistance exercise is still the best way to stimulate protein synthesis and induce chronic muscle adaptations. The aim of this study was to investigate the acute and chronic effects of resistance exercise coupled with Rha and Rho supplementation on protein synthesis, muscle phenotype, and physical performance. Methods For the acute study, fifty-six rats were assigned to either a trained control group or one of the groups treated with specific doses of Rha and/or Rho. Each rats performed a single bout of climbing resistance exercise. The supplements were administered immediately after exercise by oral gavage. Protein synthesis was measured via puromycin incorporation. For the chronic study, forty rats were assigned to either the control group or one of the groups treated with doses adjusted from the acute study results. The rats were trained five times per week for 4 weeks with the same bout of climbing resistance exercise with additionals loads. Rha + Rho supplement was administered immediately after each training by oral gavage. Results The findings of the acute study indicated that Rha and Rha + Rho supplementation after resistance exercise stimulated protein synthesis more than resistance exercise alone (p < 0.05). After 4 weeks of training, the mean power performance was increased in the Rha + Rho and Rha-alone groups (p < 0.05) without any significant supplementation effect on muscle weight or fiber cross-sectional area. A tendency towards an increase in type I/ type II fiber ratio was observed in Rha/Rho-treated groups compared to that in the trained control group. Conclusion Rhodiola and Rhaponticum supplementation after resistance exercise could synergistically improve protein synthesis, muscle phenotype and physical performance.

2014 ◽  
pp. 693-704 ◽  
Author(s):  
C. B. O’LEARY ◽  
A. C. HACKNEY

The biosynthesis and metabolism of testosterone and cortisol are altered by the high levels of adipose tissue and the constant state of low-grade inflammation of obesity. Resistance exercise (REx) has become one of the main lifestyle interventions prescribed to obese individuals due to its ability to positively influence body composition and some biomarkers, such as cholesterol and insulin resistance. Yet, little research has been done in obese examining the effects of REx on the testosterone and blood cortisol responses, two integral hormones in both exercise and obesity. The obese testosterone response to REx and whether or not it is blunted compared to lean individuals remains elusive. Conflicting findings concerning the blood cortisol response have also been reported, likely due to variance in REx protocol and the level of obesity in the participants in studies. Comparatively, both of these hormones have been extremely well studied in untrained lean males, which could be used as a basis for future research in obese males. However, without this endocrinological information, it is unknown if the current acute REx prescriptions are appropriate for eliciting a favorable acute endocrinological response, and ultimately, a positive chronic adaptation in obese males.


Author(s):  
Jeeser Alves de Almeida ◽  
Márcio Rabelo Mota ◽  
Ricardo Jacó Oliveira ◽  
Denize Faria Terra ◽  
Emerson Pardono ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 583
Author(s):  
Johan S. Saenz ◽  
Alina Kurz ◽  
Ursula Ruczizka ◽  
Moritz Bünger ◽  
Maximiliane Dippel ◽  
...  

The ingestion of mycotoxins can cause adverse health effects and represents a severe health risk to humans and livestock. Even though several acute and chronic effects have been described, the effect on the gut metaproteome is scarcely known. For that reason, we used metaproteomics to evaluate the effect of the mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) on the gut microbiome of 15 weaned piglets. Animals were fed for 28 days with feed contaminated with different concentrations of DON (DONlow: 870 μg DON/kg feed, DONhigh: 2493 μg DON/kg feed) or ZEN (ZENlow: 679 μg ZEN/kg feed, ZENhigh: 1623 μg ZEN/kg feed). Animals in the control group received uncontaminated feed. The gut metaproteome composition in the high toxin groups shifted compared to the control and low mycotoxin groups, and it was also more similar among high toxin groups. These changes were accompanied by the increase in peptides belonging to Actinobacteria and a decrease in peptides belonging to Firmicutes. Additionally, DONhigh and ZENhigh increased the abundance of proteins associated with the ribosomes and pentose-phosphate pathways, while decreasing glycolysis and other carbohydrate metabolism pathways. Moreover, DONhigh and ZENhigh increased the abundance of the antioxidant enzyme thioredoxin-dependent peroxiredoxin. In summary, the ingestion of DON and ZEN altered the abundance of different proteins associated with microbial metabolism, genetic processing, and oxidative stress response, triggering a disruption in the gut microbiome structure.


2009 ◽  
Vol 106 (5) ◽  
pp. 1730-1739 ◽  
Author(s):  
Satoshi Fujita ◽  
Hans C. Dreyer ◽  
Micah J. Drummond ◽  
Erin L. Glynn ◽  
Elena Volpi ◽  
...  

Ingestion of an essential amino acid-carbohydrate (EAA + CHO) solution following resistance exercise enhances muscle protein synthesis during postexercise recovery. It is unclear whether EAA + CHO ingestion before resistance exercise can improve direct measures of postexercise muscle protein synthesis (fractional synthetic rate; FSR). We hypothesized that EAA + CHO ingestion before a bout of resistance exercise would prevent the exercise-induced decrease in muscle FSR and would result in an enhanced rate of muscle FSR during postexercise recovery. We studied 22 young healthy subjects before, during, and for 2 h following a bout of high-intensity leg resistance exercise. The fasting control group ( n = 11) did not ingest nutrients, and the EAA + CHO group ( n = 11) ingested a solution of EAA + CHO 1 h before beginning the exercise bout. Stable isotopic methods were used in combination with muscle biopsies to determine FSR. Immunoblotting procedures were utilized to assess cell signaling proteins associated with the regulation of FSR. We found that muscle FSR increased in the EAA + CHO group immediately following EAA + CHO ingestion ( P < 0.05), returned to basal values during exercise, and remained unchanged at 1 h postexercise. Muscle FSR decreased in the fasting group during exercise and increased at 1 h postexercise ( P < 0.05). However, the 2 h postexercise FSR increased by ∼50% in both groups with no differences between groups ( P > 0.05). Eukaryotic elongation factor 2 phosphorylation was reduced in both groups at 2 h postexercise (EAA + CHO: 39 ± 7%; fasting: 47 ± 9%; P < 0.05). We conclude that EAA + CHO ingestion before resistance exercise does not enhance postexercise FSR compared with exercise without nutrients.


2014 ◽  
Vol 306 (10) ◽  
pp. E1155-E1162 ◽  
Author(s):  
Riki Ogasawara ◽  
Koji Sato ◽  
Kenji Matsutani ◽  
Koichi Nakazato ◽  
Satoshi Fujita

Concurrent training, a combination of endurance (EE) and resistance exercise (RE) performed in succession, may compromise the muscle hypertrophic adaptations induced by RE alone. However, little is known about the molecular signaling interactions underlying the changes in skeletal muscle adaptation during concurrent training. Here, we used an animal model to investigate whether EE before or after RE affects the molecular signaling associated with muscle protein synthesis, specifically the interaction between RE-induced mammalian target of rapamycin complex 1 (mTORC1) signaling and EE-induced AMP-activated protein kinase (AMPK) signaling. Male Sprague-Dawley rats were divided into five groups: an EE group (treadmill, 25 m/min, 60 min), an RE group (maximum isometric contraction via percutaneous electrical stimulation for 3 × 10 s, 5 sets), an EE before RE group, an EE after RE group, and a nonexercise control group. Phosphorylation of p70S6K, a marker of mTORC1 activity, was significantly increased 3 h after RE in both the EE before RE and EE after RE groups, but the increase was smaller in latter. Furthermore, protein synthesis was greatly increased 6 h after RE in the EE before RE group. Increases in the phosphorylation of AMPK and Raptor were observed only in the EE after RE group. Akt and mTOR phosphorylation were increased in both groups, with no between-group differences. Our results suggest that the last bout of exercise dictates the molecular responses and that mTORC1 signaling induced by any prior bout of RE may be downregulated by a subsequent bout of EE.


Author(s):  
Gustavo Oliveira da Silva ◽  
Luiza Batista Santini ◽  
Breno Quintella Farah ◽  
Antonio Henrique Germano-Soares ◽  
Mariliade Almeida Correia ◽  
...  

AbstractThe aim of this systematic review was to analyze the acute and chronic effects of sitting breaks on cardiovascular parameters. PubMed and Web of Science databases were searched by two independent researchers for relevant studies published until February 2020. Acute or chronic studies reporting the effects of sitting breaks or reduction in sitting time on cardiovascular parameters were examined. The eligibility criteria followed PICOS: Population - Humans ≥ 18 years old; Interventions – Sitting break strategies; Comparisons – Uninterrupted sitting; Outcomes – Cardiovascular parameters (blood pressure, heart rate, ambulatory blood pressure, vascular function, pulse-wave velocity, cerebral blood flow and biomarkers); Study design – Randomized controlled trials, non-randomized non-controlled trials and randomized crossover trials. Forty-five studies were included, where 35 investigated the acute and 10 the chronic effects of sitting breaks or reductions in sitting time. Walking was the main acute study strategy, used in different volumes (1 min 30 s to 30 min), intensities (light to vigorous) and frequencies (every 20 min to every 2 h). Acute studies found improvements on cardiovascular parameters, especially blood pressure, flow-mediated dilation, and biomarkers, whereas chronic studies found improvements mostly on blood pressure. Breaking up or reducing sitting time improves cardiovascular parameters, especially with walking.


Clinics ◽  
2010 ◽  
Vol 65 (3) ◽  
pp. 317-325 ◽  
Author(s):  
Crivaldo Gomes Cardoso Jr ◽  
Ricardo Saraceni Gomides ◽  
Andréia Cristiane Carrenho Queiroz ◽  
Luiz Gustavo Pinto ◽  
Fernando da Silveira Lobo ◽  
...  

2008 ◽  
Vol 294 (2) ◽  
pp. E392-E400 ◽  
Author(s):  
Hans C. Dreyer ◽  
Micah J. Drummond ◽  
Bart Pennings ◽  
Satoshi Fujita ◽  
Erin L. Glynn ◽  
...  

We recently showed that resistance exercise and ingestion of essential amino acids with carbohydrate (EAA+CHO) can independently stimulate mammalian target of rapamycin (mTOR) signaling and muscle protein synthesis in humans. Providing an EAA+CHO solution postexercise can further increase muscle protein synthesis. Therefore, we hypothesized that enhanced mTOR signaling might be responsible for the greater muscle protein synthesis when leucine-enriched EAA+CHOs are ingested during postexercise recovery. Sixteen male subjects were randomized to one of two groups (control or EAA+CHO). The EAA+CHO group ingested the nutrient solution 1 h after resistance exercise. mTOR signaling was assessed by immunoblotting from repeated muscle biopsy samples. Mixed muscle fractional synthetic rate (FSR) was measured using stable isotope techniques. Muscle protein synthesis and 4E-BP1 phosphorylation during exercise were significantly reduced ( P < 0.05). Postexercise FSR was elevated above baseline in both groups at 1 h but was even further elevated in the EAA+CHO group at 2 h postexercise ( P < 0.05). Increased FSR was associated with enhanced phosphorylation of mTOR and S6K1 ( P < 0.05). Akt phosphorylation was elevated at 1 h and returned to baseline by 2 h in the control group, but it remained elevated in the EAA+CHO group ( P < 0.05). 4E-BP1 phosphorylation returned to baseline during recovery in control but became elevated when EAA+CHO was ingested ( P < 0.05). eEF2 phosphorylation decreased at 1 and 2 h postexercise to a similar extent in both groups ( P < 0.05). Our data suggest that enhanced activation of the mTOR signaling pathway is playing a role in the greater synthesis of muscle proteins when resistance exercise is followed by EAA+CHO ingestion.


Sign in / Sign up

Export Citation Format

Share Document