scholarly journals Identification of a novel B-cell epitope in the spike protein of porcine epidemic diarrhea virus

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Ning Kong ◽  
Qiong Meng ◽  
Yajuan Jiao ◽  
Yongguang Wu ◽  
Yewen Zuo ◽  
...  
Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 790
Author(s):  
Sung-Jae Kim ◽  
Van-Giap Nguyen ◽  
Thi-My-Le Huynh ◽  
Yong-Ho Park ◽  
Bong-Kyun Park ◽  
...  

Porcine epidemic diarrhea virus (PEDV) causes continuous, significant damage to the swine industry worldwide. By RT-PCR-based methods, this study demonstrated the ongoing presence of PEDV in pigs of all ages in Korea at the average detection rate of 9.92%. By the application of Bayesian phylogenetic analysis, it was found that the nucleocapsid (N) gene of PEDV could evolve at similar rates to the spike (S) gene at the order of 10−4 substitutions/site/year. Based on branching patterns of PEDV strains, three main N gene-base genogroups (N1, N2, and N3) and two sub-genogroups (N3a, N3b) were proposed in this study. By analyzing the antigenic index, possible antigenic differences also emerged in both the spike and nucleocapsid proteins between the three genogroups. The antigenic indexes of genogroup N3 strains were significantly lower compared with those of genogroups N1 and N2 strains in the B-cell epitope of the nucleocapsid protein. Similarly, significantly lower antigenic indexes in some parts of the B-cell epitope sequences of the spike protein (COE, S1D, and 2C10) were also identified. PEDV mutants derived from genetic mutations of the S and N genes may cause severe damage to swine farms by evading established host immunities.


2012 ◽  
Vol 9 (1) ◽  
pp. 225 ◽  
Author(s):  
Zhibang Zhang ◽  
Jianfei Chen ◽  
Hongyan Shi ◽  
Xiaojin Chen ◽  
Da Shi ◽  
...  

2008 ◽  
Vol 131 (1-2) ◽  
pp. 73-81 ◽  
Author(s):  
Dongbo Sun ◽  
Li Feng ◽  
Hongyan Shi ◽  
Jianfei Chen ◽  
Xiaochen Cui ◽  
...  

2021 ◽  
Author(s):  
Kanokporn Polyiam ◽  
Marasri Ruengjitchatchawalya ◽  
Phenjun Mekvichitsaeng ◽  
Kampon Kaeoket ◽  
Tawatchai Hoonsuwan ◽  
...  

AbstractPorcine Epidemic Diarrhea Virus (PEDV) is the causative agent of PED, an enteric disease that causes high mortality rates in piglets. PEDV is an alphacoronavirus that has high genetic diversity. Insights into neutralizing B cell epitopes of all genetically diverse PEDV strains are of importance, particularly for designing a vaccine that can provide broad protection against PEDV. In this work, we aimed to explore the landscape of linear B cell epitopes on the spike (S) and membrane (M) proteins of global PEDV strains. All amino acid sequences of the PEDV S and M proteins were retrieved from the NCBI database and grouped. Immunoinformatics-based methods were next developed and used to identify putative linear B cell epitopes from 14 and 5 consensus sequences generated from distinct groups of the S and M proteins, respectively. ELISA testing predicted peptides with PEDV-positive sera revealed 9 novel immunodominant epitopes on the S protein. Importantly, 7 of these novel immunodominant epitopes and other subdominant epitopes were demonstrated to be neutralizing epitopes by neutralization-inhibition assay. Additionally, our study shows the first time that M protein is also the target of neutralizing antibodies as 7 neutralizing epitopes in the M protein were identified. Conservancy analysis revealed that epitopes in the S1 subunit are more variable than those in the S2 subunit and M protein. In this study, we offer the immunoinformatics approach for linear B cell epitope identification and a more complete profile of linear B cell epitopes across the PEDV S and M proteins, which may contribute to the development of a greater PEDV vaccine as well as peptide-based immunoassays.


2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Yixuan Hou ◽  
Hanzhong Ke ◽  
Jineui Kim ◽  
Dongwan Yoo ◽  
Yunfang Su ◽  
...  

ABSTRACT Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets; however, effective and safe vaccines are still not available. We hypothesized that inactivation of the 2′-O-methyltransferase (2′-O-MTase) activity of nsp16 and the endocytosis signal of the spike protein attenuates PEDV yet retains its immunogenicity in pigs. We generated a recombinant PEDV, KDKE4A, with quadruple alanine substitutions in the catalytic tetrad of the 2′-O-MTase using a virulent infectious cDNA clone, icPC22A, as the backbone. Next, we constructed another mutant, KDKE4A-SYA, by abolishing the endocytosis signal of the spike protein of KDKE4A. Compared with icPC22A, the KDKE4A and KDKE4A-SYA mutants replicated less efficiently in vitro but induced stronger type I and type III interferon responses. The pathogenesis and immunogenicities of the mutants were evaluated in gnotobiotic piglets. The virulence of KDKE4A-SYA and KDKE4A was significantly reduced compared with that of icPC22A. Mortality rates were 100%, 17%, and 0% in the icPC22A-, KDKE4A-, and KDKE4A-SYA-inoculated groups, respectively. At 21 days postinoculation (dpi), all surviving pigs were challenged orally with a high dose of icPC22A. The KDKE4A-SYA- and KDKE4A-inoculated pigs were protected from the challenge, because no KDKE4A-SYA- and one KDKE4A-inoculated pig developed diarrhea whereas all the pigs in the mock-inoculated group had severe diarrhea, and 33% of them died. Furthermore, we serially passaged the KDKE4A-SYA mutant in pigs three times and did not find any reversion of the introduced mutations. The data suggest that KDKE4A-SYA may be a PEDV vaccine candidate. IMPORTANCE PEDV is the most economically important porcine enteric viral pathogen and has caused immense economic losses in the pork industries in many countries. Effective and safe vaccines are desperately required but still not available. 2′-O-MTase (nsp16) is highly conserved among coronaviruses (CoVs), and the inactivation of nsp16 in live attenuated vaccines has been attempted for several betacoronaviruses. We show that inactivation of both 2′-O-MTase and the endocytosis signal of the spike protein is an approach to designing a promising live attenuated vaccine for PEDV. The in vivo passaging data also validated the stability of the KDKE4A-SYA mutant. KDKE4A-SYA warrants further evaluation in sows and their piglets and may be used as a platform for further optimization. Our findings further confirmed that nsp16 can be a universal target for CoV vaccine development and will aid in the development of vaccines against other emerging CoVs.


npj Vaccines ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
René Wintjens ◽  
Amanda Makha Bifani ◽  
Pablo Bifani

2018 ◽  
Vol 163 (9) ◽  
pp. 2327-2335 ◽  
Author(s):  
Lok R. Joshi ◽  
Faten A. Okda ◽  
Aaron Singrey ◽  
Mayara F. Maggioli ◽  
Tatiane C. Faccin ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yunwen Zhang ◽  
Zhengrong Yang ◽  
Sicheng Tian ◽  
Baisheng Li ◽  
Tiejian Feng ◽  
...  

Abstract Background Serological test is helpful in confirming and tracking infectious diseases in large population with the advantage of fast and convenience. Using the specific epitope peptides identified from the whole antigen as the detection antigen is sensitive and relatively economical. The development of epitope peptide-based detection kits for COVID-19 patients requires comprehensive information about epitope peptides. But the data on B cell epitope of SARS-CoV-2 spike protein is still limited. More importantly, there is a lack of serological data on the peptides in the population. In this study, we aimed to identify the B cell epitope peptides of spike protein and detect the reactivity in serum samples, for further providing data support for their subsequent serological applications. Results Two B cell linear epitopes, P104 and P82, located in non-RBD region of SARS-CoV-2 S protein were identified by indirect ELISA screening of an overlapping peptide library of the S protein with COVID-19 patients’ convalescent serum. And the peptides were verified by testing with 165 serum samples. P104 has not been reported previously; P82 is contained in peptide S21P2 reported before. The positive reaction rates of epitope peptides S14P5 and S21P2, the two non-RBD region epitopes identified by Poh et al., and P82 and P104 were 77.0%, 73.9%, 61.2% and 30.3%, respectively, for 165 convalescent sera, including 30 asymptomatic patients. Although P104 had the lowest positive rate for total patients (30.3%), it exhibited slight advantage for detection of asymptomatic infections (36.7%). Combination of epitopes significantly improved the positive reaction rate. Among all combination patterns, (S14P5 + S21P2 + P104) pattern exhibited the highest positive reaction rate for all patients (92.7%), as well as for asymptomatic infections (86.7%), confirming the feasibility of P104 as supplementary antigen for serological detection. In addition, we analyzed the correlation between epitopes with neutralizing antibody, but only S14P5 had a medium positive correlation with neutralizing antibody titre (rs = 0.510, P < 0.01). Conclusion Our research proved that epitopes on non-RBD region are of value in serological detection especially when combination more than one epitope, thus providing serological reaction information about the four epitopes, which has valuable references for their usage.


Sign in / Sign up

Export Citation Format

Share Document