scholarly journals Analysis of the intestinal microbial community altered during rotavirus infection in suckling mice

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Wei Zhao ◽  
Mei Ling Yu ◽  
XiaoLi Tao ◽  
Mei Hui Cheng ◽  
Chang Cheng Liu ◽  
...  

Abstract Background Rotavirus (RV) is a principal cause of diarrhea. However, there is a limited understanding regarding alteration of the gut microbial community structure and abundance during RV infection. This study was to characterize any potential associations between RV infection and the intestinal microbiota. Methods Suckling mice were divided into normal group (NC) and infected group (RV) randomly. All of the suckling mice were euthanized four days post-RV infection. The virus titer was counted as fluorescent focus assay, and viral load was quantified by QPCR. Five sucking mice were randomly selected from each RV group and NC group for sample collection and pathological analysis. Mixed intestinal contents of the colon and rectum were collected from all of the suckling mice. To investigate the detailed relationship between RV infection and intestinal microbiota, the composition and distribution of intestinal microbiota from suckling mice were first analyzed using 16S rRNA sequencing technology. Results The results of the pathological characteristics showed that vacuolar degeneration, vasodilation, hyperemia, and destruction of the intestinal epithelium were apparent in the RV group. Representative genera from Lactobacillus and Fusobacterium were enriched in the NC group, while the Enterococcus and Escherichia/Shigella genera were enriched in the RV group. Helicobacter, Alloprevotrlla, Brevundimonas, Paenibacillus, and Parabacteroides were completely undetectable in the RV group. The predicted intestinal flora metabolic function results showed that “carbohydrate metabolism” and “lipid metabolism” pathways were significantly enriched within the NC group. A significant difference has been observed in the gut microbiota composition between the two groups. Conclusions Our results demonstrated a significant difference in the gut microbiota composition in RV-infected suckling mice as compared to the RV un-infected suckling mice group. This work may provide meaningful information regarding the bacterial genera changed during RV infection. Moreover, the changes in these bacteria may be related with the replication and pathogenesis of RV infection.

2021 ◽  
Author(s):  
wei Zhao ◽  
xiaoli Tao ◽  
Meiling Yu ◽  
Meihui Cheng ◽  
Changcheng Liu ◽  
...  

Abstract Background:Rotavirus (RV) is a principal cause of diarrhea. However, there is a limited understanding regarding alteration of the gut microbial community structure and abundance during RV infection. This study was to characterize any potential associations between RV infection and the intestinal microbiota. Methods: Suckling mice were divided into normal group (NC) and infected group (RV) randomly. All of the suckling mice were euthanized four days post-RV infection. The virus titer was counted as fluorescent focus assay (FFA), and viral load was quantified by QPCR. Five sucking mice were randomly selected from each RV group and NC group for sample collection and pathological analysis. All of the suckling mice mixed intestinal contents of the colon and rectum were collected. To investigate the detailed relationship between RV infection and intestinal microbiota, the composition and distribution of intestinal microbiota from suckling mice were first analyzed using 16S rRNA sequencing technology. Results: The results of the pathological characteristics showed that vacuolar degeneration, vasodilation, hyperemia, and destruction of the intestinal epithelium were apparent in the RV group. Representative genera from Lactobacillus and Fusobacterium were enriched in the NC group, while the Enterococcus and Escherichia/Shigella genera were enriched in the RV group. Helicobacter, Alloprevotrlla, Brevundimonas, Paenibacillus, and Parabacteroides were completely undetectable in the RV group. The predicted intestinal flora metabolic function results showed that “carbohydrate metabolism” and “lipid metabolism” pathways were significantly enriched within the NC group. A significant difference has been observed in the gut microbiota composition between the two groups. Conclusions: Our results demonstrated a significant difference in the gut microbiota composition in RV-infected suckling mice as compared to the RV un-infected suckling mice group. This work may provide meaningful information regarding the bacterial genera changed during RV infection. Moreover, the changes in these bacteria may affect the replication of RV and contribute to the pathogenesis of RV infection.


2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Yinlong Cheng ◽  
Yining Li ◽  
Yonghong Xiong ◽  
Yixin Zou ◽  
Siyu Chen ◽  
...  

Abstract Purpose To investigate the effect of liver-specific knockdown of ANGPTL8 on the structure of the gut microbiota. Methods We constructed mice with liver-specific ANGPTL8 knockdown by using an adeno-associated virus serotype 8 (AAV8) system harbouring an ANGPTL8 shRNA. We analysed the structure and function of the gut microbiome through pyrosequencing and KEGG (Kyoto Encyclopedia of Genes and Genomes) functional prediction. Results Compared with controls, ANGPTL8 shRNA reduced the Simpson index and Shannon index (p < 0.01) of the gut microbiota in mice. At the phylum level, the sh-ANGPTL8 group showed a healthier gut microbiota composition than controls (Bacteroidetes: controls 67.52%, sh-ANGPTL8 80.75%; Firmicutes: controls 10.96%, sh-ANGPTL8 8.58%; Proteobacteria: controls 9.29%, sh-ANGPTL8 0.98%; F/B ratio: controls 0.16, sh-ANGPTL8 0.11). PCoA and UPGMA analysis revealed a significant difference in microbiota composition, while KEGG analysis revealed a significant difference in microbiota function between controls and the sh-ANGPTL8 group. Conclusion Our results revealed that inhibition of ANGPTL8 signalling altered the structure of the gut microbiome, which might further affect the metabolism of mice. We have thus identified ANGPTL8 as a novel hepatogenic hormone potentially involving the liver-gut axis and regulating the structure of the gut microbiota.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Casey T. Finnicum ◽  
Jeffrey J. Beck ◽  
Conor V. Dolan ◽  
Christel Davis ◽  
Gonneke Willemsen ◽  
...  

Abstract Background The gut microbiota composition is known to be influenced by a myriad of factors including the host genetic profile and a number of environmental influences. Here, we focus on the environmental influence of cohabitation on the gut microbiota as well as whether these environmentally influenced microorganisms are associated with cardiometabolic and inflammatory burden. We perform this by investigating the gut microbiota composition of various groups of related individuals including cohabitating monozygotic (MZ) twin pairs, non-cohabitating MZ twin pairs and spouse pairs. Results A stronger correlation between alpha diversity was found in cohabitating MZ twins (45 pairs, r = 0.64, p = 2.21 × 10− 06) than in non-cohabitating MZ twin pairs (121 pairs, r = 0.42, p = 1.35 × 10− 06). Although the correlation of alpha diversity did not attain significance between spouse pairs (42 pairs, r = 0.23, p = 0.15), the correlation was still higher than those in the 209 unrelated pairs (r = − 0.015, p = 0.832). Bray-Curtis (BC) dissimilarity metrics showed cohabitating MZ twin pairs had the most similar gut microbiota communities which were more similar than the BC values of non-cohabitating MZ twins (empirical p-value = 0.0103), cohabitating spouses (empirical p-value = 0.0194), and pairs of unrelated non-cohabitating individuals (empirical p-value< 0.00001). There was also a significant difference between the BC measures from the spouse pairs and those from the unrelated non-cohabitating individuals (empirical p-value< 0.00001). Intraclass correlation coefficients were calculated between the various groups of interest and the results indicate the presence of OTUs with an environmental influence and one OTU that appeared to demonstrate genetic influences. One of the OTUs (Otu0190) was observed to have a significant association with both the cardiometabolic and inflammatory burden scores (p’s < 0.05). Conclusions Through the comparison of the microbiota contents of MZ twins with varying cohabitation status and spousal pairs, we showed evidence of environmentally influenced OTUs, one of which had a significant association with cardiometabolic and inflammatory burden scores.


2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Marianna Roselli ◽  
Chiara Devirgiliis ◽  
Paola Zinno ◽  
Barbara Guantario ◽  
Alberto Finamore ◽  
...  

2020 ◽  
Author(s):  
Tuoyu He ◽  
Yun Jiang ◽  
Pengpeng Wang ◽  
Jianguo Xiang ◽  
Wangcheng Pan

AbstractThe composition and abundance of gut microbiota is essential for host health and immunity. Gut microbiota is symbiotic with the host, so changes in the host diet, development, and health will lead to changes in the gut microbiota. Conversely, changes in the gut microbiota also affect the host conditions. In this experiment, 16S rRNA high-throughput sequencing was used to compare the gut microbiota composition of 5 healthy Paa Spinosa and 6 P. spinosa with rotten-skin disease. Results: the gut microbiota composition was significant difference between diseased P. spinosa and the healthy P. spinosa; LEfSe analysis showed that the relative abundance of Methanocorpusculum, Parabacteroides, AF12, PW3, Epulopiscium, and Oscillospira were significantly higher in the diseased P. spinosa, while the relative abundance of Serratia, Eubacteium, Citrobacter, and Morganella were significantly lower. Conclusion: Rotten-skin disease changed P. spinosa gut microbiota significantly; The relative abundance of Epulopiscium and Oscillospira might be related to the health conditions of the host skin and gallbladder; The relative abundance of Serratia and Eubacteium might be important for maintaining the gut microbiota ecosystem.


Author(s):  
F. Borgo ◽  
A. D. Macandog ◽  
S. Diviccaro ◽  
E. Falvo ◽  
S. Giatti ◽  
...  

Abstract Purpose Post-finasteride syndrome (PFS) has been reported in a subset of patients treated with finasteride (an inhibitor of the enzyme 5alpha-reductase) for androgenetic alopecia. These patients showed, despite the suspension of the treatment, a variety of persistent symptoms, like sexual dysfunction and cognitive and psychological disorders, including depression. A growing body of literature highlights the relevance of the gut microbiota-brain axis in human health and disease. For instance, alterations in gut microbiota composition have been reported in patients with major depressive disorder. Therefore, we have here analyzed the gut microbiota composition in PFS patients in comparison with a healthy cohort. Methods Fecal microbiota of 23 PFS patients was analyzed by 16S rRNA gene sequencing and compared with that reported in ten healthy male subjects. Results Sexual dysfunction, psychological and cognitive complaints, muscular problems, and physical alterations symptoms were reported in more than half of the PFS patients at the moment of sample collection. The quality sequence check revealed a low library depth for two fecal samples. Therefore, the gut microbiota analyses were conducted on 21 patients. The α-diversity was significantly lower in PFS group, showing a reduction of richness and diversity of gut microbiota structure. Moreover, when visualizing β-diversity, a clustering effect was found in the gut microbiota of a subset of PFS subjects, which was also characterized by a reduction in Faecalibacterium spp. and Ruminococcaceae UCG-005, while Alloprevotella and Odoribacter spp were increased compared to healthy control. Conclusion Gut microbiota population is altered in PFS patients, suggesting that it might represent a diagnostic marker and a possible therapeutic target for this syndrome.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2936
Author(s):  
Maija Marttinen ◽  
Reeta Ala-Jaakkola ◽  
Arja Laitila ◽  
Markus J. Lehtinen

Among athletes, nutrition plays a key role, supporting training, performance, and post-exercise recovery. Research has primarily focused on the effects of diet in support of an athletic physique; however, the role played by intestinal microbiota has been much neglected. Emerging evidence has shown an association between the intestinal microbiota composition and physical activity, suggesting that modifications in the gut microbiota composition may contribute to physical performance of the host. Probiotics represent a potential means for beneficially influencing the gut microbiota composition/function but can also impact the overall health of the host. In this review, we provide an overview of the existing studies that have examined the reciprocal interactions between physical activity and gut microbiota. We further evaluate the clinical evidence that supports the effects of probiotics on physical performance, post-exercise recovery, and cognitive outcomes among athletes. In addition, we discuss the mechanisms of action through which probiotics affect exercise outcomes. In summary, beneficial microbes, including probiotics, may promote health in athletes and enhance physical performance and exercise capacity. Furthermore, high-quality clinical studies, with adequate power, remain necessary to uncover the roles that are played by gut microbiota populations and probiotics in physical performance and the modes of action behind their potential benefits.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2089 ◽  
Author(s):  
Ezgi BELLIKCI-KOYU ◽  
Banu Pınar SARER-YUREKLI ◽  
Yakut AKYON ◽  
Fadime AYDIN-KOSE ◽  
Cem KARAGOZLU ◽  
...  

Several health-promoting effects of kefir have been suggested, however, there is limited evidence for its potential effect on gut microbiota in metabolic syndrome This study aimed to investigate the effects of regular kefir consumption on gut microbiota composition, and their relation with the components of metabolic syndrome. In a parallel-group, randomized, controlled clinical trial setting, patients with metabolic syndrome were randomized to receive 180 mL/day kefir (n = 12) or unfermented milk (n = 10) for 12 weeks. Anthropometrical measurements, blood samples, blood pressure measurements, and fecal samples were taken at the beginning and end of the study. Fasting insulin, HOMA-IR, TNF-α, IFN-γ, and systolic and diastolic blood pressure showed a significant decrease by the intervention of kefir (p ≤ 0.05, for each). However, no significant difference was obtained between the kefir and unfermented milk groups (p > 0.05 for each). Gut microbiota analysis showed that regular kefir consumption resulted in a significant increase only in the relative abundance of Actinobacteria (p = 0.023). No significant change in the relative abundance of Bacteroidetes, Proteobacteria or Verrucomicrobia by kefir consumption was obtained. Furthermore, the changes in the relative abundance of sub-phylum bacterial populations did not differ significantly between the groups (p > 0.05, for each). Kefir supplementation had favorable effects on some of the metabolic syndrome parameters, however, further investigation is needed to understand its effect on gut microbiota composition.


2020 ◽  
Author(s):  
Tzu-Lung Lin ◽  
Chia-Chen Lu ◽  
Wei-Fan Lai ◽  
Ting-Shu Wu ◽  
Jang-Jih Lu ◽  
...  

Abstract Traditional Chinese Medicine (TCM) has been extensively used to ameliorate diseases in Asia for over thousands of years. However, owing to a lack of formal scientific validation, the absence of information regarding the mechanisms underlying TCMs restricts their application. After oral administration, TCM herbal ingredients frequently are not directly absorbed by the host, but rather enter the intestine to be transformed by gut microbiota. The gut microbiota is a microbial community living in animal intestines, and functions to maintain host homeostasis and health. Increasing evidences indicate that TCM herbs closely affect gut microbiota composition, which is associated with the conversion of herbal components into active metabolites. These may significantly affect the therapeutic activity of TCMs. Microbiota analyses, in conjunction with modern multiomics platforms, can together identify novel functional metabolites and form the basis of future TCM research.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3999
Author(s):  
Jerónimo Aragón-Vela ◽  
Patricio Solis-Urra ◽  
Francisco Javier Ruiz-Ojeda ◽  
Ana Isabel Álvarez-Mercado ◽  
Jorge Olivares-Arancibia ◽  
...  

Physical activity, exercise, or physical fitness are being studied as helpful nonpharmacological therapies to reduce signaling pathways related to inflammation. Studies describing changes in intestinal microbiota have stated that physical activity could increase the microbial variance and enhance the ratio of Firmicutes/Bacteroidetes, and both actions could neutralize the obesity progression and diminish body weight. The aim of this review is to provide an overview of the literature describing the relationship between physical activity profiles and gut microbiota and in obesity and some associated comorbidities. Promoting physical activity could support as a treatment to maintain the gut microbiota composition or to restore the balance toward an improvement of dysbiosis in obesity; however, these mechanisms need to be studied in more detail. The opportunity to control the microbiota by physical activity to improve health results and decrease obesity and related comorbidities is very attractive. Nevertheless, several incompletely answered questions need to be addressed before this strategy can be implemented.


Sign in / Sign up

Export Citation Format

Share Document