scholarly journals Liver-specific knockdown of ANGPTL8 alters the structure of the gut microbiota in mice

2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Yinlong Cheng ◽  
Yining Li ◽  
Yonghong Xiong ◽  
Yixin Zou ◽  
Siyu Chen ◽  
...  

Abstract Purpose To investigate the effect of liver-specific knockdown of ANGPTL8 on the structure of the gut microbiota. Methods We constructed mice with liver-specific ANGPTL8 knockdown by using an adeno-associated virus serotype 8 (AAV8) system harbouring an ANGPTL8 shRNA. We analysed the structure and function of the gut microbiome through pyrosequencing and KEGG (Kyoto Encyclopedia of Genes and Genomes) functional prediction. Results Compared with controls, ANGPTL8 shRNA reduced the Simpson index and Shannon index (p < 0.01) of the gut microbiota in mice. At the phylum level, the sh-ANGPTL8 group showed a healthier gut microbiota composition than controls (Bacteroidetes: controls 67.52%, sh-ANGPTL8 80.75%; Firmicutes: controls 10.96%, sh-ANGPTL8 8.58%; Proteobacteria: controls 9.29%, sh-ANGPTL8 0.98%; F/B ratio: controls 0.16, sh-ANGPTL8 0.11). PCoA and UPGMA analysis revealed a significant difference in microbiota composition, while KEGG analysis revealed a significant difference in microbiota function between controls and the sh-ANGPTL8 group. Conclusion Our results revealed that inhibition of ANGPTL8 signalling altered the structure of the gut microbiome, which might further affect the metabolism of mice. We have thus identified ANGPTL8 as a novel hepatogenic hormone potentially involving the liver-gut axis and regulating the structure of the gut microbiota.

Author(s):  
Kerri L. Coon ◽  
Michael R. Strand

Most animals including mosquitoes and other vector arthropods harbor communities of microorganisms in their digestive tract that comprise a gut microbiota. Recent studies indicate the gut microbiota strongly affects several aspects of mosquito biology. In this chapter, we first summarize current knowledge of mosquito gut microbiota composition and acquisition. We then review impacts of the gut microbiota on nutrition, development, and vector competence followed by future perspectives for using the gut microbiota in vector control and altering disease transmission.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafael Corrêa ◽  
Igor de Oliveira Santos ◽  
Heloísa Antoniella Braz-de-Melo ◽  
Lívia Pimentel de Sant’Ana ◽  
Raquel das Neves Almeida ◽  
...  

AbstractGut microbiota composition can modulate neuroendocrine function, inflammation, and cellular and immunological responses against different pathogens, including viruses. Zika virus (ZIKV) can infect adult immunocompetent individuals and trigger brain damage and antiviral responses. However, it is not known whether ZIKV infection could impact the gut microbiome from adult immunocompetent mice. Here, we investigated modifications induced by ZIKV infection in the gut microbiome of immunocompetent C57BL/6J mice. Adult C57BL/6J mice were infected with ZIKV and the gut microbiota composition was analyzed by next-generation sequencing of the V4 hypervariable region present in the bacterial 16S rDNA gene. Our data showed that ZIKV infection triggered a significant decrease in the bacteria belonging to Actinobacteria and Firmicutes phyla, and increased Deferribacteres and Spirochaetes phyla components compared to uninfected mice. Interestingly, ZIKV infection triggered a significant increase in the abundance of bacteria from the Spirochaetaceae family in the gut microbiota. Lastly, we demonstrated that modulation of microbiota induced by ZIKV infection may lead to intestinal epithelium damage and intense leukocyte recruitment to the intestinal mucosa. Taken together, our data demonstrate that ZIKV infection can impact the gut microbiota composition and colon tissue homeostasis in adult immunocompetent mice.


2020 ◽  
Vol 71 (1) ◽  
pp. 149-161 ◽  
Author(s):  
Ilias Attaye ◽  
Sara-Joan Pinto-Sietsma ◽  
Hilde Herrema ◽  
Max Nieuwdorp

Cardiometabolic disease (CMD), such as type 2 diabetes mellitus and cardiovascular disease, contributes significantly to morbidity and mortality on a global scale. The gut microbiota has emerged as a potential target to beneficially modulate CMD risk, possibly via dietary interventions. Dietary interventions have been shown to considerably alter gut microbiota composition and function. Moreover, several diet-derived microbial metabolites are able to modulate human metabolism and thereby alter CMD risk. Dietary interventions that affect gut microbiota composition and function are therefore a promising, novel, and cost-efficient method to reduce CMD risk. Studies suggest that fermentable carbohydrates can beneficially alter gut microbiota composition and function, whereas high animal protein and high fat intake negatively impact gut microbiota function and composition. This review focuses on the role of macronutrients (i.e., carbohydrate, protein, and fat) and dietary patterns (e.g., vegetarian/vegan and Mediterranean diet) in gut microbiota composition and function in the context of CMD.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S896-S897
Author(s):  
Faris S Alnezary ◽  
Tasnuva Rashid ◽  
Khurshida Begum ◽  
Travis J Carlson ◽  
Anne J Gonzales-Luna ◽  
...  

Abstract Background Antimicrobials disrupt the gut microbiota by reducing gut microbiome diversity and quantity. Galleria mellonella provides an invertebrate model that is inexpensive, easy to maintain, and does not require specialized equipment. This study investigated the feasibility of using G. mellonella as an in vivo model to evaluate the effect of different antimicrobials on gut microbiota. Methods To determine baseline gut microbiota composition, the gut contents of G. mellonella were extracted and genomic DNA underwent shotgun meta-genomic sequencing. To determine the effect of infection and antibiotic use, 30 larvae were injected (left proleg) with ~1 × 105 colony-forming unit (cfu) of methicillin-resistant Staphylococcus aureus (MRSA) and were randomized 1:1:1 to treatment with vancomycin (20 mg/kg) or a natural antimicrobial (Nigella sativa seed oil, 70 mg/kg; NS oil), or a combination. The larvae were kept at 37°C post-infection and monitored daily for 72 hours for activity, extent of cocoon formation/growth, melanization, and survival. Two larvae from each group were randomly selected and homogenized with PBS as controls. After 24 hours of incubation, gut contents were extracted and plated for MRSA and Enterococcus cfu counts. Results Metagenomics analysis showed the gut microbiota composition of G. mellonella larvae was dominated by a subset of closely-related Enterococcus species. After 24 hours of exposure, mean Enterococcus counts were 4 × 103 cfu in the vancomycin arm and 6.2 × 104 cfu in the NS oil arm. Mean MRSA counts were 3.3 × 105 cfu in vancomycin arm and 1.5 × 104 cfu in NS oil arm. The combination of vancomycin and NS oil had higher Enterococcus counts than the vancomycin alone arm (6.3 × 104 cfu vs. 4 × 103 cfu, respectively), suggesting that NS oil may have a role in protecting the gut microbiota. Conclusion This study provides preliminary evidence to support the potential use of G. mellonella to assess the in vivo effect of a natural and synthetic antimicrobial on the gut microbiota. Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Casey T. Finnicum ◽  
Jeffrey J. Beck ◽  
Conor V. Dolan ◽  
Christel Davis ◽  
Gonneke Willemsen ◽  
...  

Abstract Background The gut microbiota composition is known to be influenced by a myriad of factors including the host genetic profile and a number of environmental influences. Here, we focus on the environmental influence of cohabitation on the gut microbiota as well as whether these environmentally influenced microorganisms are associated with cardiometabolic and inflammatory burden. We perform this by investigating the gut microbiota composition of various groups of related individuals including cohabitating monozygotic (MZ) twin pairs, non-cohabitating MZ twin pairs and spouse pairs. Results A stronger correlation between alpha diversity was found in cohabitating MZ twins (45 pairs, r = 0.64, p = 2.21 × 10− 06) than in non-cohabitating MZ twin pairs (121 pairs, r = 0.42, p = 1.35 × 10− 06). Although the correlation of alpha diversity did not attain significance between spouse pairs (42 pairs, r = 0.23, p = 0.15), the correlation was still higher than those in the 209 unrelated pairs (r = − 0.015, p = 0.832). Bray-Curtis (BC) dissimilarity metrics showed cohabitating MZ twin pairs had the most similar gut microbiota communities which were more similar than the BC values of non-cohabitating MZ twins (empirical p-value = 0.0103), cohabitating spouses (empirical p-value = 0.0194), and pairs of unrelated non-cohabitating individuals (empirical p-value< 0.00001). There was also a significant difference between the BC measures from the spouse pairs and those from the unrelated non-cohabitating individuals (empirical p-value< 0.00001). Intraclass correlation coefficients were calculated between the various groups of interest and the results indicate the presence of OTUs with an environmental influence and one OTU that appeared to demonstrate genetic influences. One of the OTUs (Otu0190) was observed to have a significant association with both the cardiometabolic and inflammatory burden scores (p’s < 0.05). Conclusions Through the comparison of the microbiota contents of MZ twins with varying cohabitation status and spousal pairs, we showed evidence of environmentally influenced OTUs, one of which had a significant association with cardiometabolic and inflammatory burden scores.


2018 ◽  
Vol 20 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Jianfei Zhao ◽  
Xiaoya Zhang ◽  
Hongbin Liu ◽  
Michael A. Brown ◽  
Shiyan Qiao

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Jessica C. Ralston ◽  
Kathleen A.J. Mitchelson ◽  
Gina M. Lynch ◽  
Tam T.T. Tran ◽  
Conall R. Strain ◽  
...  

AbstractReduced inflammatory signaling (IL-1RI-/-) alters metabolic responses to dietary challenges (1). Inflammasome deficiency (e.g. IL-18-/-, Asc-/-) can modify gut microbiota concomitant with hepatosteatosis; an effect that was transferable to wild-type (WT) mice by co-housing (2). Taken together, this evidence suggests that links between diet, microbiota and IL-1RI-signaling can influence metabolic health. Our aim was to determine whether IL-1RI-mediated signaling interacted with the gut microbiome to impact metabolic tissue functionality in a diet-specific fashion. Male WT (C57BL/J6) and IL-1RI-/- mice were fed either high-fat diet (HFD; 45% kcal) or low-fat diet (LFD; 10% kcal) for 24 weeks and were housed i) separately by genotype or ii) with genotypes co-housed together (i.e. isolated vs shared microbial environment; n = 8–10 mice per group). Glucose tolerance and insulin secretion response (1.5 g/kg i.p.), gut microbiota composition and caecal short-chain fatty acids (SCFA) were assessed. Liver and adipose tissue were harvested and examined for triacylglycerol (TAG) formation, cholesterol and metabolic markers (Fasn, Cpt1α, Pparg, Scd1, Dgat1/2), using histology, gas-chromatography and RT-PCR, respectively. Statistical analysis included 1-way or 2-way ANOVA, where appropriate, with Bonferroni post-hoc correction. Co-housing significantly affected gut microbiota composition, illustrated by clustering in PCoA (unweighted UniFrac distance) of co-housed mice but not their single-housed counterparts, on both HFD and LFD. The taxa driving these differences were primarily from Lachnospiraceae and Ruminococcaceae families. Single-housed WT had lower hepatic weight, TAG, cholesterol levels and Fasn despite HFD, an effect lost in their co-housed counterparts, who aligned more to IL-1RI-/- hepatic lipid status. Hepatic Cpt1α was lowest in co-housed WT. Adipose from IL-1RI-/- groups on HFD displayed increased adipocyte size and reduced adipocyte number compared to WT groups, but greater lipogenic potential (Pparg, Scd1, Dgat2) alongside a blunted IL-6 response to pro-inflammatory stimuli (~32%, P = 0.025). Whilst caecal SCFA concentrations were not different between groups, single-housed IL-1RI-/- adipocytes showed greatest sensitivity to SCFA-induced lipogenesis. Interestingly, differences in tissue functionality and gut microbiome occurred despite unaltered glucose tolerance; although there was a trend for phenotypic transfer of body weight via co-housing. For all endpoints examined, similar genotype/co-housing effects were observed for both HFD and LFD with the greatest impacts seen in HFD-fed mice. In conclusion, while the gut microbiome may be an important consideration in dietary interventions, these results question the magnitude of its impact in relation to the IL-1RI-dependent immunometabolism-glucose homeostasis axis.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 748 ◽  
Author(s):  
Jin-Young Lee ◽  
Mohamed Mannaa ◽  
Yunkyung Kim ◽  
Jehun Kim ◽  
Geun-Tae Kim ◽  
...  

The aim of this study was to investigate differences between the gut microbiota composition in patients with rheumatoid arthritis (RA) and those with osteoarthritis (OA). Stool samples from nine RA patients and nine OA patients were collected, and DNA was extracted. The gut microbiome was assessed using 16S rRNA gene amplicon sequencing. The structures and differences in the gut microbiome between RA and OA were analyzed. The analysis of diversity revealed no differences in the complexity of samples. The RA group had a lower Bacteroidetes: Firmicutes ratio than did the OA group. Lactobacilli and Prevotella, particularly Prevotella copri, were more abundant in the RA than in the OA group, although these differences were not statistically significant. The relative abundance of Bacteroides and Bifidobacterium was lower in the RA group. At the species level, the abundance of certain bacterial species was significantly lower in the RA group, such as Fusicatenibacter saccharivorans, Dialister invisus, Clostridium leptum, Ruthenibacterium lactatiformans, Anaerotruncus colihominis, Bacteroides faecichinchillae, Harryflintia acetispora, Bacteroides acidifaciens, and Christensenella minuta. The microbial properties of the gut differed between RA and OA patients, and the RA dysbiosis revealed results similar to those of other autoimmune diseases, suggesting that a specific gut microbiota pattern is related to autoimmunity.


Sign in / Sign up

Export Citation Format

Share Document