scholarly journals In vivo quantification of quantum dot systemic transport in C57BL/6 hairless mice following skin application post-ultraviolet radiation

2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Samreen Jatana ◽  
Brian C. Palmer ◽  
Sarah J. Phelan ◽  
Robert Gelein ◽  
Lisa A. DeLouise
2004 ◽  
Vol 80 (3) ◽  
pp. 377 ◽  
Author(s):  
Andrew M. Smith ◽  
Xiaohu Gao ◽  
Shuming Nie
Keyword(s):  

2014 ◽  
Vol 107 (6) ◽  
pp. 523-529 ◽  
Author(s):  
Konstantin Galichanin ◽  
Stefan Löfgren ◽  
Per Söderberg

2017 ◽  
Vol 1 ◽  
pp. 239784731772319 ◽  
Author(s):  
A Lymberopoulos ◽  
C Demopoulou ◽  
M Kyriazi ◽  
MS Katsarou ◽  
N Demertzis ◽  
...  

Objectives: Liposomes are reported as penetration enhancers for dermal and transdermal delivery. However, little is known about their percutaneous penetration and as to at which level they deliver encapsulated drugs. The penetration of multilamellar vesicles (MLVs) and small unilamellar vesicles (SUVs), in comparison to one of their lipid components, was investigated. Methods: Using the fluorescent lipid, Lissamine Rhodamine B-PE (R), as a constituent, MLV and SUV liposomes were prepared, tested, and R, MLV, or SUV were applied in vivo on the back of hairless mice. Absorption of each was evaluated at the levels of stratum corneum, living skin, and blood by fluorometry. Results: Penetration of the lipid R in stratum corneum in the nonliposomal form exceeded that in the liposomal form and only R penetrates the living skin in a statistically significant manner. No statistical significant absorption into blood was observed with either form. Conclusions: Liposomes size did not play an important role in penetration to stratum corneum. The lipid constituent in the nonliposomal form penetrated at higher rates into stratum corneum and living skin. Even though these liposomes entered stratum corneum, they were not significantly absorbed into viable skin or blood.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Gábor Erős ◽  
Petra Hartmann ◽  
Szilvia Berkó ◽  
Eszter Csizmazia ◽  
Erzsébet Csányi ◽  
...  

Enhancement of the transdermal penetration of different active agents is an important research goal. Our aim was to establish a novelin vivoexperimental model which provides a possibility for exact measurement of the quantity of penetrated drug. The experiments were performed on SKH-1 hairless mice. A skin fold in the dorsal region was fixed with two fenestrated titanium plates. A circular wound was made on one side of the skin fold. A metal cylinder with phosphate buffer was fixed into the window of the titanium plate. The concentration of penetrated drug was measured in the buffer. The skin fold was morphologically intact and had a healthy microcirculation. The drug appeared in the acceptor buffer after 30 min, and its concentration exhibited a continuous increase. The presence of ibuprofen was also detected in the plasma. In conclusion, this model allows an exactin vivostudy of drug penetration and absorption.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Hui Hua ◽  
Jiawei Cheng ◽  
Wenbo Bu ◽  
Juan Liu ◽  
Weiwei Ma ◽  
...  

Aim. To determine whether 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) is effective in combating ultraviolet A- (UVA-) induced oxidative photodamage of hairless mice skin in vivo and human epidermal keratinocytes in vitro. Methods. In in vitro experiments, the human keratinocyte cell line (HaCaT cells) was divided into two groups: the experimental group was treated with ALA-PDT and the control group was left untreated. Then, the experimental group and the control group of cells were exposed to 10 J/m2 of UVA radiation. ROS, O2− species, and MMP were determined by fluorescence microscopy; p53, OGG1, and XPC were determined by Western blot analysis; apoptosis was determined by flow cytometry; and 8-oxo-dG was determined by immunofluorescence. Moreover, HaCaT cells were also treated with ALA-PDT. Then, SOD1 and SOD2 were examined by Western blot analysis. In in vivo experiments, the dorsal skin of hairless mice was treated with ALA-PDT or saline-PDT, and then, they were exposed to 20 J/m2 UVA light. The compound 8-oxo-dG was detected by immunofluorescence. Conclusion. In human epidermal keratinocytes and hairless mice skin, UVA-induced oxidative damage can be prevented effectively with ALA-PDT pretreatment.


2021 ◽  
Author(s):  
Graham Anderson ◽  
Andrew McLeod ◽  
Pierre Bagnaninchi ◽  
Baljean Dhillon

The role of ultraviolet radiation (UVR) exposure in the pathology of age-related macular degeneration (AMD) has been debated for decades with epidemiological evidence failing to find a clear consensus for or against it playing a role. A key reason for this is a lack of foundational research into the response of living retinal tissue to UVR in regard to AMD-specific parameters of tissue function. We, therefore, explored the response of cultured retinal pigmented epithelium (RPE), the loss of which heralds advanced AMD, to specific wavelengths of UVR across the UV-B and UV-A bands found in natural sunlight. Using a bespoke in vitro UVR exposure apparatus coupled with bandpass filters we exposed the immortalised RPE cell line, ARPE-19, to 10nm bands of UVR between 290 and 405nm. Physical cell dynamics were assessed during exposure in cells cultured upon specialist electrode culture plates which allow for continuous, non-invasive electrostatic interrogation of key cell parameters during exposure such as monolayer coverage and tight-junction integrity. UVR exposures were also utilised to quantify wavelength-specific effects using a rapid cell viability assay and a phenotypic profiling assay which was leveraged to simultaneously quantify intracellular reactive oxygen species (ROS), nuclear morphology, mitochondrial stress, epithelial integrity and cell viability as part of a phenotypic profiling approach to quantifying the effects of UVR. Electrical impedance assessment revealed unforeseen detrimental effects of UV-A, beginning at 350nm, alongside previously demonstrated UV-B impacts. Cell viability analysis also highlighted increased effects at 350nm as well as 380nm. Effects at 350nm were further substantiated by high content image analysis which highlighted increased mitochondrial dysfunction and oxidative stress. We conclude that ARPE-19 cells exhibit a previously uncharacterised sensitivity to UV-A radiation, specifically at 350nm and somewhat less at 380nm. If upheld in vivo, such sensitivity will have impacts upon geoepidemiological risk scoring of AMD.


Sign in / Sign up

Export Citation Format

Share Document