scholarly journals Next generation diagnostic pathology: use of digital pathology and artificial intelligence tools to augment a pathological diagnosis

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Anil V. Parwani
2021 ◽  
pp. 371-413
Author(s):  
Elena Locci ◽  
Silvia Raymond

Approximately 850,000 American women are diagnosed with the dreaded word cancer every year, while two-thirds of cancer deaths in the country are preventable. Although different types of cancer are worrisome, experts say that more than worrying, one should look for ways to control and prevent them, which are also readily available. Keywords: Cancer; Cells; Tissues; Tumors; Prevention; Prognosis; Diagnosis; Imaging; Screening; Treatment; Management


Healthcare ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 30
Author(s):  
Daniele Giansanti

Thanks to the incredible changes promoted by Information and Communication Technology (ICT) conveyed today by electronic-health (eHealth) and mobile-health (mHealth), many new applications of both organ and cellular diagnostics are now possible [...]


2021 ◽  
Author(s):  
Changjiang Zhou ◽  
Xiaobing Feng ◽  
Hongbin Cai ◽  
Yi Jin ◽  
Harvest F. Gu ◽  
...  

2017 ◽  
Vol 107 ◽  
pp. 98-99 ◽  
Author(s):  
Jing Zhang ◽  
Yanlin Song ◽  
Fan Xia ◽  
Chenjing Zhu ◽  
Yingying Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 74-83
Author(s):  
John Kang ◽  
Reid F. Thompson ◽  
Sanjay Aneja ◽  
Constance Lehman ◽  
Andrew Trister ◽  
...  

2020 ◽  
pp. 1-5
Author(s):  
Bahman Zohuri ◽  
◽  
Farhang Mossavar Rahmani ◽  

Companies such as Intel as a pioneer in chip design for computing are pushing the edge of computing from its present Classical Computing generation to the next generation of Quantum Computing. Along the side of Intel corporation, companies such as IBM, Microsoft, and Google are also playing in this domain. The race is on to build the world’s first meaningful quantum computer—one that can deliver the technology’s long-promised ability to help scientists do things like develop miraculous new materials, encrypt data with near-perfect security and accurately predict how Earth’s climate will change. Such a machine is likely more than a decade away, but IBM, Microsoft, Google, Intel, and other tech heavyweights breathlessly tout each tiny, incremental step along the way. Most of these milestones involve packing more quantum bits, or qubits—the basic unit of information in a quantum computer—onto a processor chip ever. But the path to quantum computing involves far more than wrangling subatomic particles. Such computing capabilities are opening a new area into dealing with the massive sheer volume of structured and unstructured data in the form of Big Data, is an excellent augmentation to Artificial Intelligence (AI) and would allow it to thrive to its next generation of Super Artificial Intelligence (SAI) in the near-term time frame.


2021 ◽  
pp. jclinpath-2020-207351
Author(s):  
Jenny Fitzgerald ◽  
Debra Higgins ◽  
Claudia Mazo Vargas ◽  
William Watson ◽  
Catherine Mooney ◽  
...  

Clinical workflows in oncology depend on predictive and prognostic biomarkers. However, the growing number of complex biomarkers contributes to costly and delayed decision-making in routine oncology care and treatment. As cancer is expected to rank as the leading cause of death and the single most important barrier to increasing life expectancy in the 21st century, there is a major emphasis on precision medicine, particularly individualisation of treatment through better prediction of patient outcome. Over the past few years, both surgical and pathology specialties have suffered cutbacks and a low uptake of pathology specialists means a solution is required to enable high-throughput screening and personalised treatment in this area to alleviate bottlenecks. Digital imaging in pathology has undergone an exponential period of growth. Deep-learning (DL) platforms for hematoxylin and eosin (H&E) image analysis, with preliminary artificial intelligence (AI)-based grading capabilities of specimens, can evaluate image characteristics which may not be visually apparent to a pathologist and offer new possibilities for better modelling of disease appearance and possibly improve the prediction of disease stage and patient outcome. Although digital pathology and AI are still emerging areas, they are the critical components for advancing personalised medicine. Integration of transcriptomic analysis, clinical information and AI-based image analysis is yet an uncultivated field by which healthcare professionals can make improved treatment decisions in cancer. This short review describes the potential application of integrative AI in offering better detection, quantification, classification, prognosis and prediction of breast and prostate cancer and also highlights the utilisation of machine learning systems in biomarker evaluation.


Sign in / Sign up

Export Citation Format

Share Document