scholarly journals Small fiber neuropathy for assessment of disease severity in amyotrophic lateral sclerosis: corneal confocal microscopy findings

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Jiayu Fu ◽  
Ji He ◽  
Yixuan Zhang ◽  
Ziyuan Liu ◽  
Haikun Wang ◽  
...  

Abstract Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with progressive motor system impairment, and recent evidence has identified the extra-motor involvement. Small fiber neuropathy reflecting by sensory and autonomic disturbances in ALS has been reported to accompany the motor damage. However, non-invasive assessment of this impairment and its application in disease evaluation of ALS is scarce. We aim to evaluate the use of corneal confocal microscopy (CCM) to non-invasively quantify the corneal small fiber neuropathy in ALS and explore its clinical value in assessing disease severity of ALS. Methods Sixty-six patients with ALS and 64 healthy controls were included in this cross-sectional study. Participants underwent detailed clinical assessments and corneal imaging with in vivo CCM. Using ImageJ, the following parameters were quantified: corneal nerve length (IWL) and dendritic cell density (IWDC) in the inferior whorl region and corneal nerve fiber length (CNFL), nerve fiber density (CNFD), nerve branch density (CNBD), and dendritic cell density (CDC) in the peripheral region. Disease severity was evaluated using recognized scales. Results Corneal nerve lengths (IWL and CNFL) were lower while dendritic cell densities (IWDC and CDC) were higher in patients with ALS than controls in peripheral and inferior whorl regions (p < 0.05). Additionally, corneal nerve complexity in the peripheral region was greater in patients than controls with higher CNBD (p = 0.040) and lower CNFD (p = 0.011). IWL was significantly associated with disease severity (p < 0.001) and progression (p = 0.002) in patients with ALS. Patients with bulbar involvement showed significantly lower IWL (p = 0.014) and higher IWDC (p = 0.043) than patients without bulbar involvement. Conclusions CCM quantified significant corneal neuropathy in ALS, and alterations in the inferior whorl region were closely associated with disease severity. CCM could serve as a noninvasive, objective imaging tool to detect corneal small fiber neuropathy for clinical evaluation in ALS.

2018 ◽  
Vol 9 (5) ◽  
pp. 1167-1172 ◽  
Author(s):  
Adnan Khan ◽  
Ioannis N Petropoulos ◽  
Georgios Ponirakis ◽  
Robert A Menzies ◽  
Omar Chidiac ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 205521732199806
Author(s):  
Ayşe Altıntaş ◽  
Ayse Yildiz-Tas ◽  
Sezen Yilmaz ◽  
Betul N Bayraktutar ◽  
Melis Cansu Comert ◽  
...  

Background Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory autoimmune disorder that damages optic nerves, brainstem, and spinal cord. In vivo corneal confocal microscopy (IVCM) is a noninvasive technique that provides corneal images with dendritic cells (DCs) and corneal subbasal nerve plexus (SBP), which arises from the trigeminal nerve. Objective We investigated corneal SBP changes in NMOSD and proposed IVCM as a potential new disease severity biomarker for NMOSD. Methods Seventeen age-sex matched NMOSD patients and 19 healthy participants underwent complete neurologic and ophthalmologic examinations. The duration of disease, first symptom, presence of optic neuritis attack, antibody status, Expanded Disability Status Scale(EDSS) score and disease severity score(DSS) were recorded. Retinal nerve fibre layer (RNFL) thickness was measured with optical coherence tomography, and corneal SBP images were taken with IVCM. Results NMOSD patients had significantly reduced corneal nerve fibre lenght-density and corneal nerve branch lenght-density compared with controls, while DC density was increased. NMOSD patients also showed significantly reduced RNFL thickness compared with controls. EDSS,DSS levels were inversely correlated with IVCM parameters. Conclusion We observed significant corneal nerve fibre loss in NMOSD patients in relation to disease severity. IVCM can be a candidate noninvasive imaging method for axonal damage assessment in NMOSD that warrants further investigation.


Cornea ◽  
2015 ◽  
Vol 34 (9) ◽  
pp. 1114-1119 ◽  
Author(s):  
Franziska Bucher ◽  
Christian Schneider ◽  
Tobias Blau ◽  
Claus Cursiefen ◽  
Gereon R. Fink ◽  
...  

2021 ◽  
Vol 29 (1) ◽  
pp. 1-8
Author(s):  
Mariia V. Lukashenko ◽  
Natalia Y. Gavrilova ◽  
Anna V. Bregovskaya ◽  
Lidiia A. Soprun ◽  
Leonid P. Churilov ◽  
...  

Chronic pain may affect 30–50% of the world’s population and an important cause is small fiber neuropathy (SFN). Recent research suggests that autoimmune diseases may be one of the most common causes of small nerve fiber damage. There is low awareness of SFN among patients and clinicians and it is difficult to diagnose as routine electrophysiological methods only detect large fiber abnormalities, and specialized small fiber tests, like skin biopsy and quantitative sensory testing, are not routinely available. Corneal confocal microscopy (CCM) is a rapid, non-invasive, reproducible method for quantifying small nerve fiber degeneration and regeneration, and could be an important tool for diagnosing SFN. This review considers the advantages and disadvantages of CCM and highlights the evolution of this technique from a research tool to a diagnostic test for small fiber damage, which can be a valuable contribution to the study and management of autoimmune disease.


Diabetes Care ◽  
2015 ◽  
Vol 38 (8) ◽  
pp. 1502-1508 ◽  
Author(s):  
Shazli Azmi ◽  
Maryam Ferdousi ◽  
Ioannis N. Petropoulos ◽  
Georgios Ponirakis ◽  
Uazman Alam ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeremy Chung Bo Chiang ◽  
David Goldstein ◽  
Azadeh Tavakoli ◽  
Terry Trinh ◽  
Jacob Klisser ◽  
...  

AbstractImmune cell infiltration has been implicated in neurotoxic chemotherapy for cancer treatment. However, our understanding of immune processes is still incomplete and current methods of observing immune cells are time consuming or invasive. Corneal dendritic cells are potent antigen-presenting cells and can be imaged with in-vivo corneal confocal microscopy. Corneal dendritic cell densities and nerve parameters in patients treated with neurotoxic chemotherapy were investigated. Patients treated for cancer with oxaliplatin (n = 39) or paclitaxel (n = 48), 3 to 24 months prior to assessment were recruited along with 40 healthy controls. Immature (ImDC), mature (MDC) and total dendritic cell densities (TotalDC), and corneal nerve parameters were analyzed from in-vivo corneal confocal microscopy images. ImDC was increased in the oxaliplatin group (Median, Md = 22.7 cells/mm2) compared to healthy controls (Md = 10.1 cells/mm2, p = 0.001), but not in the paclitaxel group (Md = 10.6 cells/mm2). ImDC was also associated with higher oxaliplatin cumulative dose (r = 0.33, p = 0.04) and treatment cycles (r = 0.40, p = 0.01). There was no significant difference in MDC between the three groups (p > 0.05). Corneal nerve parameters were reduced in both oxaliplatin and paclitaxel groups compared to healthy controls (p < 0.05). There is evidence of elevation of corneal ImDC in oxaliplatin-treated patients. Further investigation is required to explore this potential link through longitudinal studies and animal or laboratory-based immunohistochemical research.


Sign in / Sign up

Export Citation Format

Share Document