scholarly journals LPI-EnEDT: an ensemble framework with extra tree and decision tree classifiers for imbalanced lncRNA-protein interaction data classification

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lihong Peng ◽  
Ruya Yuan ◽  
Ling Shen ◽  
Pengfei Gao ◽  
Liqian Zhou

Abstract Background Long noncoding RNAs (lncRNAs) have dense linkages with various biological processes. Identifying interacting lncRNA-protein pairs contributes to understand the functions and mechanisms of lncRNAs. Wet experiments are costly and time-consuming. Most computational methods failed to observe the imbalanced characterize of lncRNA-protein interaction (LPI) data. More importantly, they were measured based on a unique dataset, which produced the prediction bias. Results In this study, we develop an Ensemble framework (LPI-EnEDT) with Extra tree and Decision Tree classifiers to implement imbalanced LPI data classification. First, five LPI datasets are arranged. Second, lncRNAs and proteins are separately characterized based on Pyfeat and BioTriangle and concatenated as a vector to represent each lncRNA-protein pair. Finally, an ensemble framework with Extra tree and decision tree classifiers is developed to classify unlabeled lncRNA-protein pairs. The comparative experiments demonstrate that LPI-EnEDT outperforms four classical LPI prediction methods (LPI-BLS, LPI-CatBoost, LPI-SKF, and PLIPCOM) under cross validations on lncRNAs, proteins, and LPIs. The average AUC values on the five datasets are 0.8480, 0,7078, and 0.9066 under the three cross validations, respectively. The average AUPRs are 0.8175, 0.7265, and 0.8882, respectively. Case analyses suggest that there are underlying associations between HOTTIP and Q9Y6M1, NRON and Q15717. Conclusions Fusing diverse biological features of lncRNAs and proteins and exploiting an ensemble learning model with Extra tree and decision tree classifiers, this work focus on imbalanced LPI data classification as well as interaction information inference for a new lncRNA (or protein).

2004 ◽  
Vol 22 (2) ◽  
pp. 177-183 ◽  
Author(s):  
Henning Hermjakob ◽  
Luisa Montecchi-Palazzi ◽  
Gary Bader ◽  
Jérôme Wojcik ◽  
Lukasz Salwinski ◽  
...  

2020 ◽  
Author(s):  
Diogo Borges Lima ◽  
Ying Zhu ◽  
Fan Liu

ABSTRACTSoftware tools that allow visualization and analysis of protein interaction networks are essential for studies in systems biology. One of the most popular network visualization tools in biology is Cytoscape, which offers a large selection of plugins for interpretation of protein interaction data. Chemical cross-linking coupled to mass spectrometry (XL-MS) is an increasingly important source for such interaction data, but there are currently no Cytoscape tools to analyze XL-MS results. In light of the suitability of Cytoscape platform but also to expand its toolbox, here we introduce XlinkCyNET, an open-source Cytoscape Java plugin for exploring large-scale XL-MS-based protein interaction networks. XlinkCyNET offers rapid and easy visualization of intra and intermolecular cross-links and the locations of protein domains in a rectangular bar style, allowing subdomain-level interrogation of the interaction network. XlinkCyNET is freely available from the Cytoscape app store: http://apps.cytoscape.org/apps/xlinkcynet and at https://www.theliulab.com/software/xlinkcynet.


Author(s):  
Hugo Willy

Recent breakthroughs in high throughput experiments to determine protein-protein interaction have generated a vast amount of protein interaction data. However, most of the experiments could only answer the question of whether two proteins interact but not the question on the mechanisms by which proteins interact. Such understanding is crucial for understanding the protein interaction of an organism as a whole (the interactome) and even predicting novel protein interactions. Protein interaction usually occurs at some specific sites on the proteins and, given their importance, they are usually well conserved throughout the evolution of the proteins of the same family. Based on this observation, a number of works on finding protein patterns/motifs conserved in interacting proteins have emerged in the last few years. Such motifs are collectively termed as the interaction motifs. This chapter provides a review on the different approaches on finding interaction motifs with a discussion on their implications, potentials and possible areas of improvements in the future.


Sign in / Sign up

Export Citation Format

Share Document