scholarly journals Targeting oncogenic Notch signaling with SERCA inhibitors

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Luca Pagliaro ◽  
Matteo Marchesini ◽  
Giovanni Roti

AbstractP-type ATPase inhibitors are among the most successful and widely prescribed therapeutics in modern pharmacology. Clinical transition has been safely achieved for H+/K+ ATPase inhibitors such as omeprazole and Na+/K+-ATPase inhibitors like digoxin. However, this is more challenging for Ca2+-ATPase modulators due to the physiological role of Ca2+ in cardiac dynamics. Over the past two decades, sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) modulators have been studied as potential chemotherapy agents because of their Ca2+-mediated pan-cancer lethal effects. Instead, recent evidence suggests that SERCA inhibition suppresses oncogenic Notch1 signaling emerging as an alternative to γ-secretase modulators that showed limited clinical activity due to severe side effects. In this review, we focus on how SERCA inhibitors alter Notch1 signaling and show that Notch on-target-mediated antileukemia properties of these molecules can be achieved without causing overt Ca2+ cellular overload.

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1758-P
Author(s):  
HUGO MARTIN ◽  
SÉBASTIEN BULLICH ◽  
FABIEN DUCROCQ ◽  
MARION GRALAND ◽  
CLARA OLIVRY ◽  
...  

The role of vitamin D is implicated in carcinogenesis through numerous biological processes like induction of apoptosis, modulation of immune system inhibition of inflammation and cell proliferation and promotion of cell differentiation. Its use as additional adjuvant drug with cancer treatment may be novel combination for improved outcome of different cancers. Numerous preclinical, epidemiological and clinical studies support the role of vitamin D as an anticancer agent. Anticancer properties of vitamin D have been studied widely (both in vivo and in vitro) among various cancers and found to have promising results. There are considerable data that indicate synergistic potential of calcitriol and antitumor agents. Possible mechanisms for modulatory anticancer activity of vitamin D include its antiproliferative, prodifferentiating, and anti-angiogenic and apoptic properties. Calcitriol reduces invasiveness and metastatic potential of many cancer cells by inhibiting angiogenesis and regulating expression of the key molecules involved in invasion and metastasis. Anticancer activity of vitamin D is synergistic or additive with the antineoplastic actions of several drugs including cytotoxic chemotherapy agents like paclitaxel, docetaxel, platinum base compounds and mitoxantrone. Benefits of addition of vitamin D should be weighed against the risk of its toxicity.


2012 ◽  
Vol 30 (1) ◽  
pp. 100
Author(s):  
Wei HUANG ◽  
Shi-Bao ZHANG ◽  
Kun-Fang CAO

2018 ◽  
Vol 25 (23) ◽  
pp. 2627-2636 ◽  
Author(s):  
Vincenzo Calderone ◽  
Alma Martelli ◽  
Eugenia Piragine ◽  
Valentina Citi ◽  
Lara Testai ◽  
...  

In the last four decades, the several classes of diuretics, currently available for clinical use, have been the first line option for the therapy of widespread cardiovascular and non-cardiovascular diseases. Diuretic drugs generally exhibit an overall favourable risk/benefit balance. However, they are not devoid of side effects. In particular, all the classes of diuretics cause alteration of potassium homeostasis. <p> In recent years, understanding of the physiological role of the renal outer medullary potassium (ROMK) channels, has shown an intriguing pharmacological target for developing an innovative class of diuretic agents: the ROMK inhibitors. This novel class is expected to promote diuretic activity comparable to (or even higher than) that provided by the most effective drugs used in clinics (such as furosemide), with limited effects on potassium homeostasis. <p> In this review, the physio-pharmacological roles of ROMK channels in the renal function are reported, along with the most representative molecules which have been currently developed as ROMK inhibitors.


2021 ◽  
Vol 22 (11) ◽  
pp. 5575
Author(s):  
Agnieszka Markiewicz ◽  
Dawid Sigorski ◽  
Mateusz Markiewicz ◽  
Agnieszka Owczarczyk-Saczonek ◽  
Waldemar Placek

Caspase-14 is a unique member of the caspase family—a family of molecules participating in apoptosis. However, it does not affect this process but regulates another form of programmed cell death—cornification, which is characteristic of the epidermis. Therefore, it plays a crucial role in the formation of the skin barrier. The cell death cycle has been a subject of interest for researchers for decades, so a lot of research has been done to expand the understanding of caspase-14, its role in cell homeostasis and processes affecting its expression and activation. Conversely, it is also an interesting target for clinical researchers searching for its role in the physiology of healthy individuals and its pathophysiology in particular diseases. A summary was done in 2008 by Denecker et al., concentrating mostly on the biotechnological aspects of the molecule and its physiological role. However, a lot of new data have been reported, and some more practical and clinical research has been conducted since then. The majority of studies tackled the issue of clinical data presenting the role of caspase in the etiopathology of many diseases such as retinal dysfunctions, multiple malignancies, and skin conditions. This review summarizes the available knowledge on the molecular and, more interestingly, the clinical aspects of caspase-14. It also presents how theoretical science may pave the way for medical research. Methods: The authors analyzed publications available on PubMed until 21 March 2021, using the search term “caspase 14”.


Sign in / Sign up

Export Citation Format

Share Document