scholarly journals Establishment and validation of an RNA binding protein-associated prognostic model for ovarian cancer

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Chaofan He ◽  
Fuxin Huang ◽  
Kejia Zhang ◽  
Jun Wei ◽  
Ke Hu ◽  
...  

Abstract Background Ovarian cancer (OC) is one of the most common gynecological malignant tumors worldwide, with high mortality and a poor prognosis. As the early symptoms of malignant ovarian tumors are not obvious, the cause of the disease is still unclear, and the patients’ postoperative quality of life of decreases. Therefore, early diagnosis is a problem requiring an urgent solution. Methods We obtained the gene expression profiles of ovarian cancer and normal samples from TCGA and GTEx databases for differential expression analysis. From existing literature reports, we acquired the RNA-binding protein (RBP) list for the human species. Utilizing the online tool Starbase, we analyzed the interaction relationship between RBPs and their target genes and selected the modules of RBP target genes through Cytoscape. Finally, univariate and multivariate Cox regression analyses were used to determine the prognostic RBP signature. Results We obtained 527 differentially expressed RBPs, which were involved in many important cellular events, such as RNA splicing, the cell cycle, and so on. We predicted several target genes of RBPs, constructed the interaction network of RBPs and their target genes, and obtained many modules from the Cytoscape analysis. Functional enrichment of RBP target genes also includes these important biological processes. Through Cox regression analysis, OC prognostic RBPs were identified and a 10-RBP model constructed. Further analysis showed that the model has high accuracy and sensitivity in predicting the 3/5-year survival rate. Conclusions Our study identified differentially expressed RBPs and their target genes in OC, and the results promote our understanding of the molecular mechanism of ovarian cancer. The current study could develop novel biomarkers for the diagnosis, treatment, and prognosis of OC and provide new ideas and prospects for future clinical research.

2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer.Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an. Functional enrichment analysis was performed by Metascape.Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR, MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000).Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2021 ◽  
Author(s):  
Qinglian He ◽  
Ziqi Li ◽  
Xue Lei ◽  
Qian Zou ◽  
Haibing Yu ◽  
...  

Abstract Background: RNA binding protein (RBP) is an active factor involved in the occurrence and development of colorectal cancer (CRC). Therefore, the potential mechanism of RBP in CRC needs to be clarified by dry-lab analyses or wet-lab experiments.Methods: The differential RBP gene obtained from the GEPIA 2 (Gene Expression Profiling Interactive Analysis 2) were performed functional enrichment analysis. Then, the alternative splicing (AS) events related to survival were acquired by univariate regression analysis, and the correlation between RBP and AS was analyzed by R software. The online databases were conducted to analyze the mutation and methylation of RBPs in CRC. Moreover, 5 key RBP signatures were obtained through univariate and multivariate Cox regression analysis and established as RBP prognosis model. Subsequently, the above model was verified through another randomized group of TCGA CRC cohorts. Finally, multiple online databases and qRT-PCR analysis were carried to further confirm the expression of the above 5 RBP signatures in CRC.Results: Through a comprehensive bioinformatics analysis, it was revealed that RBPs had genetic and epigenetic changes in CRC. We obtained 300 differentially expressed RBPs in CRC samples. The functional analysis suggested that they mainly participated in spliceosome. Then, a regulatory network for RBP was established to participate in AS and DDX39B was detected to act as a potentially essential factor in the regulation of AS in CRC. Our analysis discovered that 11 differentially expressed RBPs with a mutation frequency higher than 5%. Furthermore, we found that 10 differentially expressed RBPs had methylation sites related to the prognosis of CRC, and a prognostic model was constructed by the 5 RBP signatures. In another randomized group of TCGA CRC cohorts, the prognostic performance of the 5 RBP signatures was verified. Conclusion: The potential mechanisms that regulate the aberrant expression of RBPs in the development of CRC was explored, a network that regulated AS was established, and the RBP-related prognosis model was constructed and verified, which could improve the individualized prognosis prediction of CRC.


2020 ◽  
Author(s):  
Pinping Jiang ◽  
Wei Sun ◽  
Ningmei Shen ◽  
Qiang Wang ◽  
Shouyu Wang ◽  
...  

Abstract Background Autophagy, as a lysosomal degradation pathway, has been reported to be involved in various pathologies, including cancer. However, the expression profiles of autophagy-related genes (ARGs) in endometrial cancer (EC) remain poorly understood. Methods In this study, we analyzed the expression of MRGs using The Cancer Genome Atlas (TCGA) data to screen differentially expressed MRGs (DE-MRGs) significantly correlated to EC patients’ prognosis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DE-MRGs were investigated. LASSO algorithm and Cox regression analysis were performed to select MRGs closely related to EC patients’ outcomes. A prognostic signature was developed and the efficacy were validated in part of and the entire TCGA EC cohort. Moreover, we developed a comprehensive nomogram including the risk model and clinical features to predict EC patients' survival probability. Results Ninety-four ARGs significantly dysregulated in EC samples compared with the normal control samples. Functional enrichment analysis showed these differentially expressed ARGs (DE-ARGs) were highly enriched in apoptosis, P53 signaling pathway, and various cancer development. Among the 94 DE-ARGs, we subsequently screen out four-ARGs closely related to EC patients outcomes, which are ERBB2, PTEN, TP73 and ARSA. Based on the expression and coefficiency of 4 DE-ARGs, we developed a prognostic signature and further validated its efficacy in part of and the entire TCGA EC cohort. The four ARGs signature was independent of other clinical features, and was proved to effectively distinguish high- or low-risk EC patients and predicted patients' OS accurately. Moreover, the nomogram showed the excellent consistency between the prediction and actual observation in terms of patients' 3- and 5-year survival rates. Conclusions It was suggested that the ARG prognostic model and the comprehensive nomogram may guide the precise outcome prediction and rational therapy in clinical practice.


2020 ◽  
Author(s):  
Pinping Jiang ◽  
Wei Sun ◽  
Ningmei Shen ◽  
Xiaohao Huang ◽  
Shilong Fu

Abstract Background: Metabolic abnormalities have recently been widely studied in various cancer types. This study aims to explore the expression profiles of metabolism-related genes (MRGs) in endometrial cancer (EC). Methods: We analyzed the expression of MRGs using The Cancer Genome Atlas (TCGA) data to screen differentially expressed MRGs (DE-MRGs) significantly correlated to EC patients’ prognosis. Functional pathway enrichment analysis of DE-MRGs were investigated. LASSO algorithm and Cox regression analysis were performed to select MRGs closely related to EC patients’ outcomes. A prognostic signature was developed and the efficacy were validated in part of and the entire TCGA EC cohort. Moreover, we developed a comprehensive nomogram including the risk model and clinical features to predict EC patients' survival probability.Results: Forty-seven differentially expressed MRGs (DE-MRGs) were significantly correlate to EC patients’ prognosis. Functional enrichment analysis showed these MRGs were highly enriched in amino acid, glycolysis, and glycerophospholipid metabolism. Nine MRGs were screened out to closely relate to EC patients’ outcomes, which are CYP4F3, CEL, GPAT3, LYPLA2, HNMT, PHGDH, CKM, UCK2 and ACACB. Based on nine DE-MRGs, we developed a prognostic signature and its efficacy in part of and the entire TCGA EC cohort was validated. The nine-MRGs signature was independent of other clinical features, and could effectively distinguish high- or low-risk EC patients and predicted patients' OS. The nomogram showed excellent consistency between prediction and actual survival observation. Conclusions: The MRG prognostic model and the comprehensive nomogram could guide for precise outcom predicting and rational therapy in clinical practice.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qinglian He ◽  
Ziqi Li ◽  
Xue Lei ◽  
Qian Zou ◽  
Haibing Yu ◽  
...  

Abstract Background RNA binding protein (RBP) is an active factor involved in the occurrence and development of colorectal cancer (CRC). Therefore, the potential mechanism of RBP in CRC needs to be clarified by dry-lab analyses or wet-lab experiments. Methods The differential RBP gene obtained from the GEPIA 2 (Gene Expression Profiling Interactive Analysis 2) were performed functional enrichment analysis. Then, the alternative splicing (AS) events related to survival were acquired by univariate regression analysis, and the correlation between RBP and AS was analyzed by R software. The online databases were conducted to analyze the mutation and methylation of RBPs in CRC. Moreover, 5 key RBP signatures were obtained through univariate and multivariate Cox regression analysis and established as RBP prognosis model. Subsequently, the above model was verified through another randomized group of TCGA CRC cohorts. Finally, multiple online databases and qRT-PCR analysis were carried to further confirm the expression of the above 5 RBP signatures in CRC. Results Through a comprehensive bioinformatics analysis, it was revealed that RBPs had genetic and epigenetic changes in CRC. We obtained 300 differentially expressed RBPs in CRC samples. The functional analysis suggested that they mainly participated in spliceosome. Then, a regulatory network for RBP was established to participate in AS and DDX39B was detected to act as a potentially essential factor in the regulation of AS in CRC. Our analysis discovered that 11 differentially expressed RBPs with a mutation frequency higher than 5%. Furthermore, we found that 10 differentially expressed RBPs had methylation sites related to the prognosis of CRC, and a prognostic model was constructed by the 5 RBP signatures. In another randomized group of TCGA CRC cohorts, the prognostic performance of the 5 RBP signatures was verified. Conclusion The potential mechanisms that regulate the aberrant expression of RBPs in the development of CRC was explored, a network that regulated AS was established, and the RBP-related prognosis model was constructed and verified, which could improve the individualized prognosis prediction of CRC.


2020 ◽  
Author(s):  
Pinping Jiang ◽  
Wei Sun ◽  
Ningmei Shen ◽  
Qiang Wang ◽  
Shouyu Wang ◽  
...  

Abstract Background Autophagy, as a lysosomal degradation pathway, has been reported to be involved in various pathologies, including cancer. However, the expression profiles of autophagy-related genes (ARGs) in endometrial cancer (EC) remain poorly understood. Methods In this study, we analyzed the expression of MRGs using The Cancer Genome Atlas (TCGA) data to screen differentially expressed MRGs (DE-MRGs) significantly correlated to EC patients’ prognosis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DE-MRGs were investigated. LASSO algorithm and Cox regression analysis were performed to select MRGs closely related to EC patients’ outcomes. A prognostic signature was developed and the efficacy were validated in part of and the entire TCGA EC cohort. Moreover, we developed a comprehensive nomogram including the risk model and clinical features to predict EC patients' survival probability. Results Ninety-four ARGs significantly dysregulated in EC samples compared with the normal control samples. Functional enrichment analysis showed these differentially expressed ARGs (DE-ARGs) were highly enriched in apoptosis, P53 signaling pathway, and various cancer development. Among the 94 DE-ARGs, we subsequently screen out four-ARGs closely related to EC patients outcomes, which are ERBB2, PTEN, TP73 and ARSA. Based on the expression and coefficiency of 4 DE-ARGs, we developed a prognostic signature and further validated its efficacy in part of and the entire TCGA EC cohort. The four ARGs signature was independent of other clinical features, and was proved to effectively distinguish high- or low-risk EC patients and predicted patients' OS accurately. Moreover, the nomogram showed the excellent consistency between the prediction and actual observation in terms of patients' 3- and 5-year survival rates. Conclusions It was suggested that the ARG prognostic model and the comprehensive nomogram may guide the precise outcome prediction and rational therapy in clinical practice.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11219
Author(s):  
Yandong Miao ◽  
Hongling Zhang ◽  
Bin Su ◽  
Jiangtao Wang ◽  
Wuxia Quan ◽  
...  

Colorectal cancer (CRC) is one of the most prevalent and fatal malignancies, and novel biomarkers for the diagnosis and prognosis of CRC must be identified. RNA-binding proteins (RBPs) are essential modulators of transcription and translation. They are frequently dysregulated in various cancers and are related to tumorigenesis and development. The mechanisms by which RBPs regulate CRC progression are poorly understood and no clinical prognostic model using RBPs has been reported in CRC. We sought to identify the hub prognosis-related RBPs and to construct a prognostic model for clinical use. mRNA sequencing and clinical data for CRC were obtained from The Cancer Genome Atlas database (TCGA). Gene expression profiles were analyzed to identify differentially expressed RBPs using R and Perl software. Hub RBPs were filtered out using univariate Cox and multivariate Cox regression analysis. We used functional enrichment analysis, including Gene Ontology and Gene Set Enrichment Analysis, to perform the function and mechanisms of the identified RBPs. The nomogram predicted overall survival (OS). Calibration curves were used to evaluate the consistency between the predicted and actual survival rate, the consistency index (c-index) was calculated, and the prognostic effect of the model was evaluated. Finally, we identified 178 differently expressed RBPs, including 121 up-regulated and 57 down-regulated proteins. Our prognostic model was based on nine RBPs (PNLDC1, RRS1, HEXIM1, PPARGC1A, PPARGC1B, BRCA1, CELF4, AEN and NOVA1). Survival analysis showed that patients in the high-risk subgroup had a worse OS than those in the low-risk subgroup. The area under the curve value of the receiver operating characteristic curve of the prognostic model is 0.712 in the TCGA cohort and 0.638 in the GEO cohort. These results show that the model has a moderate diagnostic ability. The c-index of the nomogram is 0.77 in the TCGA cohort and 0.73 in the GEO cohort. We showed that the risk score is an independent prognostic biomarker and that some RBPs may be potential biomarkers for the diagnosis and prognosis of CRC.


2021 ◽  
Author(s):  
GenYi Qu ◽  
Guang Yang ◽  
Yong Xu ◽  
Maolin Xiang ◽  
Cheng Tang

Abstract Background: Bladder cancer (BLCA) is one of the most common urinary tract malignant tumors. It is associated with poor outcomes, and its etiology and pathogenesis are not fully understood. There is great hope for immunotherapy in treating many malignant tumors; therefore, it is worthwhile to explore the use of immunotherapy for BLCA.Methods: Gene expression profiles and clinical information were obtained from The Cancer Genome Atlas (TCGA), and immune-related genes (IRGs) were downloaded from the Immunology Database and Analysis Portal. Differentially-expressed and survival-associated IRGs in patients with BLCA were identified using computational algorithms and Cox regression analysis. We also performed functional enrichment analysis. Based on IRGs, we employed multivariate Cox analysis to develop a new prognostic index.Results: We identified 261 IRGs that were differentially expressed between BLCA tissue and adjacent tissue, 30 of which were significantly associated with the overall survival (all P<0.01). According to multivariate Cox analysis, nine survival-related IRGs (MMP9, PDGFRA, AHNAK, OAS1, OLR1, RAC3, IGF1, PGF, and SH3BP2) were high-risk genes. We developed a prognostic index based on these IRGs and found it accurately predicted BLCA outcomes associated with the TNM stage. Intriguingly, the IRG-based prognostic index reflected infiltration of macrophages.Conclusions: An independent IRG-based prognostic index provides a practical approach for assessing patients' immune status and prognosis with BLCA. This index independently predicted outcomes of BLCA.


2021 ◽  
Author(s):  
Yukun Jia ◽  
Zhan Peng ◽  
Guangye Wang

Abstract Background: RNA binding proteins (RBP) plays an important role in post-transcriptional regulation. Although the dysregulation of RBP expression is closely related to the occurrence and metastasis of a variety of tumors, there are few reports on RBP in endometrial carcinoma (UCEC). This study aims to establish a RBP-related prognostic model of UCEC. Methods: We downloaded UCEC gene expression and clinical information data from the Cancer Genome Atlas (TCGA) and GEO database, and determined RBPs that are differentially expressed between tumors and normal tissues. Then, used functional enrichment analysis to analyze the biological functions of the differentially expressed RBP. Used univariate Cox regression analysis to screen prognostic-related RBP and construct a prognostic model. Subsequently, Kaplan-Meier and recipient operating characteristic (ROC) curves were drawn to evaluate the model. Finally, established a nomogram. Results: This study identified 531 differentially expressed RBPs, including 325 up-regulated and 206 down-regulated RBPs, respectively. Then six independent prognostic-related RBPs (REXO2, MARS2, XPO5, YBX1, YBX2, and CELF4) were used to construct a prognostic model. According to this model, the overall survival (OS) of patients in the high-risk score group was significantly lower than that of the low-risk score group. In the training queue and the test queue, the areas under the ROC curve were 0.799 and 0.669, respectively, showing the moderate predictive value of the model. Conclusion: We have developed and validated the RBP-related prognostic model.


2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer. Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an . Functional enrichment analysis was performed by Metascape. Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR , MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1 ). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000). Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


Sign in / Sign up

Export Citation Format

Share Document